Working Kerr effect; PDM; speedups; removed unused files
[4yp.git] / kerr.m
CommitLineData
5fae0077 1numSymbs = 2^16;
f9a73e9e
AIL
2M = 4;
3
4Rsym = 2.5e10; % symbol rate (sym/sec)
5Tsym = 1 / Rsym; % symbol period (sec)
6
7rolloff = 0.25;
8span = 6; % filter span
5fae0077 9sps = 8; % samples per symbol
f9a73e9e
AIL
10
11fs = Rsym * sps; % sampling freq (Hz)
12Tsamp = 1 / fs;
13
14t = (0 : 1 / fs : numSymbs / Rsym + (1.5 * span * sps - 1) / fs).';
15
5fae0077
AIL
16power_dBm = -6:1:4;
17%%power_dBm = 0;
f9a73e9e
AIL
18power = 10 .^ (power_dBm / 10) * 1e-3; % watts
19
20Es = power * Tsym; % joules
21Eb = Es / log2(M); % joules
22
5fae0077
AIL
23N0ref_db = 10; % Eb/N0 at power = 1mW
24%% Fix N0, such that Eb/N0 = N0ref_db at power = 1mW
25N0 = 1e-3 * Tsym / (log2(M) * 10 ^ (N0ref_db / 10)); % joules
26%% At current settings, N0 = 0.002 pJ
f9a73e9e
AIL
27
28plotlen = length(power);
29
30ber = zeros(1, plotlen);
31
32data = randi([0 M - 1], numSymbs, 1);
5fae0077
AIL
33modData = dpskmod(data, M, 0, 'gray');
34%%modData = pskmod(data, M, pi/4, 'gray');
f9a73e9e
AIL
35
36
37%% Chromatic dispersion
38D = 17; % ps / (nm km)
39lambda = 1550; % nm
5fae0077 40z = 100; % km
f9a73e9e
AIL
41
42
5fae0077
AIL
43TsampOrig = Tsamp;
44
f9a73e9e 45for i = 1:plotlen
5fae0077
AIL
46 sps = 8;
47 Tsamp = TsampOrig;
48
f9a73e9e
AIL
49 snr = Es(i) / sps / N0;
50 snr_dB = 10 * log10(snr);
51
52 x = txFilter(modData, rolloff, span, sps);
53 %% Now, sum(abs(x) .^ 2) / length(x) should be 1.
54 %% We can set its power simply by multiplying.
55 x = sqrt(power(i)) * x;
56
57 %% We can now do split-step Fourier.
58 gamma = 1.2; % watt^-1 / km
f9a73e9e 59
5fae0077
AIL
60
61 xCDKerr = splitstepfourier(x, D, lambda, z, Tsamp, gamma);
62
63 y = awgn(xCDKerr, snr_dB, 'measured', 'db');
64 %y = xCDKerr;
f9a73e9e
AIL
65
66 r = rxFilter(y, rolloff, span, sps);
5fae0077
AIL
67 sps = 2;
68 Tsamp = Tsamp * 4;
69
f9a73e9e 70 rCDComp = CDCompensation(r, D, lambda, z, Tsamp);
5fae0077 71 rCDComp = normalizeEnergy(rCDComp, numSymbs * sps, 1);
f9a73e9e 72
5fae0077 73 rSampled = rCDComp(2:2:end);
f9a73e9e 74
5fae0077
AIL
75 %% adaptive filter
76 [adaptFilterOut, convergeIdx] = adaptiveCMA(rSampled);
f9a73e9e 77
5fae0077
AIL
78 demod = dpskdemod(adaptFilterOut, M, 0, 'gray');
79 %%demod = pskdemod(adaptFilterOut, M, pi/4, 'gray');
f9a73e9e 80
5fae0077
AIL
81 if convergeIdx < Inf
82 [~, ber(i)] = biterr(data(convergeIdx:end), demod(convergeIdx:end));
83 else
84 [~, ber(i)] = biterr...
85 (data(ceil(0.8*numSymbs):end), ...
86 demod(ceil(0.8*numSymbs):end));
f9a73e9e 87 end
5fae0077 88end
f9a73e9e 89
5fae0077 90ber
f9a73e9e 91
f9a73e9e 92
5fae0077 93figure;
f9a73e9e
AIL
94clf;
95
96%% Plot simulated results
5fae0077
AIL
97qp = 20 * log10(erfcinv(2*ber)*sqrt(2));
98plot(power_dBm, qp, 'Color', [0, 0.6, 0], 'LineWidth', 2);
f9a73e9e
AIL
99hold on;
100
101title({'CD + Kerr + CD compensation', ...
5fae0077 102 strcat(['$D = 17$ ps/(nm km), $z = ', num2str(z), '$ km'])});
f9a73e9e
AIL
103grid on;
104xlabel('Optical power (dBm)');
5fae0077 105ylabel('$20 \log_{10}\left(\sqrt{2}\mathrm{erfc}^{-1}(2 BER)\right)$');
f9a73e9e
AIL
106
107formatFigure;