numSymbs = 2^16; M = 4; Rsym = 2.5e10; % symbol rate (sym/sec) Tsym = 1 / Rsym; % symbol period (sec) rolloff = 0.25; span = 6; % filter span sps = 8; % samples per symbol fs = Rsym * sps; % sampling freq (Hz) Tsamp = 1 / fs; t = (0 : 1 / fs : numSymbs / Rsym + (1.5 * span * sps - 1) / fs).'; power_dBm = -6:1:4; %%power_dBm = 0; power = 10 .^ (power_dBm / 10) * 1e-3; % watts Es = power * Tsym; % joules Eb = Es / log2(M); % joules N0ref_db = 10; % Eb/N0 at power = 1mW %% Fix N0, such that Eb/N0 = N0ref_db at power = 1mW N0 = 1e-3 * Tsym / (log2(M) * 10 ^ (N0ref_db / 10)); % joules %% At current settings, N0 = 0.002 pJ plotlen = length(power); ber = zeros(1, plotlen); data = randi([0 M - 1], numSymbs, 1); modData = dpskmod(data, M, 0, 'gray'); %%modData = pskmod(data, M, pi/4, 'gray'); %% Chromatic dispersion D = 17; % ps / (nm km) lambda = 1550; % nm z = 100; % km TsampOrig = Tsamp; for i = 1:plotlen sps = 8; Tsamp = TsampOrig; snr = Es(i) / sps / N0; snr_dB = 10 * log10(snr); x = txFilter(modData, rolloff, span, sps); %% Now, sum(abs(x) .^ 2) / length(x) should be 1. %% We can set its power simply by multiplying. x = sqrt(power(i)) * x; %% We can now do split-step Fourier. gamma = 1.2; % watt^-1 / km xCDKerr = splitstepfourier(x, D, lambda, z, Tsamp, gamma); y = awgn(xCDKerr, snr_dB, 'measured', 'db'); %y = xCDKerr; r = rxFilter(y, rolloff, span, sps); sps = 2; Tsamp = Tsamp * 4; rCDComp = CDCompensation(r, D, lambda, z, Tsamp); rCDComp = normalizeEnergy(rCDComp, numSymbs * sps, 1); rSampled = rCDComp(2:2:end); %% adaptive filter [adaptFilterOut, convergeIdx] = adaptiveCMA(rSampled); demod = dpskdemod(adaptFilterOut, M, 0, 'gray'); %%demod = pskdemod(adaptFilterOut, M, pi/4, 'gray'); if convergeIdx < Inf [~, ber(i)] = biterr(data(convergeIdx:end), demod(convergeIdx:end)); else [~, ber(i)] = biterr... (data(ceil(0.8*numSymbs):end), ... demod(ceil(0.8*numSymbs):end)); end end ber figure; clf; %% Plot simulated results qp = 20 * log10(erfcinv(2*ber)*sqrt(2)); plot(power_dBm, qp, 'Color', [0, 0.6, 0], 'LineWidth', 2); hold on; title({'CD + Kerr + CD compensation', ... strcat(['$D = 17$ ps/(nm km), $z = ', num2str(z), '$ km'])}); grid on; xlabel('Optical power (dBm)'); ylabel('$20 \log_{10}\left(\sqrt{2}\mathrm{erfc}^{-1}(2 BER)\right)$'); formatFigure;