Added presentation; DE-QPSK; CD with FFT; split-step Fourier
[4yp.git] / kerr.m
CommitLineData
f9a73e9e
AIL
1numSymbs = 5e4;
2M = 4;
3
4Rsym = 2.5e10; % symbol rate (sym/sec)
5Tsym = 1 / Rsym; % symbol period (sec)
6
7rolloff = 0.25;
8span = 6; % filter span
9sps = 2; % samples per symbol
10
11fs = Rsym * sps; % sampling freq (Hz)
12Tsamp = 1 / fs;
13
14t = (0 : 1 / fs : numSymbs / Rsym + (1.5 * span * sps - 1) / fs).';
15
16
17power_dBm = -3:0.25:4;
18power = 10 .^ (power_dBm / 10) * 1e-3; % watts
19
20Es = power * Tsym; % joules
21Eb = Es / log2(M); % joules
22
23N0ref_dB = 10; % Eb/N0 at power = 1mW
24%% Fix N0, such that Eb/N0 = N0ref_dB at power = 1mW
25N0 = 1e-3 * Tsym / (log2(M) * 10 ^ (N0ref_dB / 10)); % joules
26
27
28plotlen = length(power);
29
30ber = zeros(1, plotlen);
31
32data = randi([0 M - 1], numSymbs, 1);
33modData = pskmod(data, M, pi / M, 'gray');
34
35
36%% Chromatic dispersion
37D = 17; % ps / (nm km)
38lambda = 1550; % nm
39z = 600; % km
40
41
42for i = 1:plotlen
43 snr = Es(i) / sps / N0;
44 snr_dB = 10 * log10(snr);
45
46 x = txFilter(modData, rolloff, span, sps);
47 %% Now, sum(abs(x) .^ 2) / length(x) should be 1.
48 %% We can set its power simply by multiplying.
49 x = sqrt(power(i)) * x;
50
51 %% We can now do split-step Fourier.
52 gamma = 1.2; % watt^-1 / km
53 %%stepnum = round(40 * z * gamma); % Nonlinear Fiber optics, App B
54 stepnum = 100;
55 xCD = splitstepfourier(x, D, lambda, z, Tsamp, gamma, stepnum);
56
57 y = awgn(xCD, snr, power(i), 'linear');
58 %%y = xCD;
59
60 r = rxFilter(y, rolloff, span, sps);
61 rCDComp = CDCompensation(r, D, lambda, z, Tsamp);
62 rCDComp = normalizeEnergy(rCDComp, numSymbs*sps, 1);
63
64 rSampled = rCDComp(sps*span/2+1:sps:(numSymbs+span/2)*sps);
65 rNoCompSampled = r(sps*span/2+1:sps:(numSymbs+span/2)*sps);
66
67 %% rotate rNoCompSampled to match original data
68 theta = angle(-sum(rNoCompSampled .^ M)) / M;
69 %% if theta approx +pi/M, wrap to -pi/M
70 if abs(theta - pi / M) / (pi / M) < 0.1
71 theta = -pi / M;
72 end
73 rNoCompSampled = rNoCompSampled .* exp(-j * theta);
74
75
76 %% Not entirely sure why, but after using FFT instead of time-domain
77 %% convolution for simulating CD, we now need to do the same rotation
78 %% for rSampled as well, but this time with a positive rotation.
79 theta = angle(-sum(rSampled .^ M)) / M;
80 if abs(theta + pi / M) / (pi / M) < 0.1
81 theta = +pi / M;
82 end
83 rSampled = rSampled .* exp(-1j * theta);
84
85
86 %% adaptive filter
87 adaptFilterOut = adaptiveCMA(rSampled);
88
89 demodAdapt = pskdemod(adaptFilterOut, M, pi / M, 'gray');
90 [~, ber(i)] = biterr(data, demodAdapt);
91end
92
93figure(1);
94clf;
95
96%% Plot simulated results
97semilogy(power_dBm, ber, 'Color', [0, 0.6, 0], 'LineWidth', 2);
98hold on;
99
100title({'CD + Kerr + CD compensation', ...
101 strcat(['$D = 17$ ps/(nm km), $z = ', num2str(z), '$ km']), ...
102 strcat(['$E_b/N_0 = ', num2str(N0ref_dB), '$ dB at 1 mW'])});
103grid on;
104xlabel('Optical power (dBm)');
105ylabel('BER');
106
107formatFigure;