Working Kerr effect; PDM; speedups; removed unused files
[4yp.git] / pdmchannel.m
CommitLineData
5fae0077
AIL
1numSymbs = 2^14;
2M = 4;
3
4Rsym = 2.5e10; % symbol rate (sym/sec)
5Tsym = 1 / Rsym; % symbol period (sec)
6
7rolloff = 0.25;
8span = 6; % filter span
9sps = 8; % samples per symbol
10
11fs = Rsym * sps; % sampling freq (Hz)
12Tsamp = 1 / fs;
13
14t = (0 : 1 / fs : numSymbs/2 / Rsym - 1/fs).';
15
16power_dBm = -6:1:4;
17%%power_dBm = 0;
18power = 10 .^ (power_dBm / 10) * 1e-3; % watts
19
20Es = power * Tsym; % joules
21Eb = Es / log2(M); % joules
22
23N0ref_db = 10; % Eb/N0 at power = 1mW
24%% Fix N0, such that Eb/N0 = N0ref_db at power = 1mW
25N0 = 1e-3 * Tsym / (log2(M) * 10 ^ (N0ref_db / 10)); % joules
26%% At current settings, N0 = 0.002 pJ
27
28plotlen = length(power);
29
30ber = zeros(1, plotlen);
31
32data = randi([0 M - 1], numSymbs, 1);
33%%modData = dpskmod(data, M, 0, 'gray');
34modData = pskmod(data, M, 0, 'gray');
35for i = 2:numSymbs
36 modData(i) = modData(i) * modData(i-1);
37end
38
39
40%% Chromatic dispersion
41D = 17; % ps / (nm km)
42lambda = 1550; % nm
43z = 100; % km
44
45linewidthTx = 0; % Hz
46linewidthLO = 1e6; % Hz
47
48TsampOrig = Tsamp;
49
50sig_x = txFilter(modData(1:numSymbs/2), rolloff, span, sps);
51sig_y = txFilter(modData(numSymbs/2+1:end), rolloff, span, sps);
52
53for i = 1:plotlen
54 sps = 8;
55 Tsamp = TsampOrig;
56
57 snr = Es(i) / sps / N0;
58 snr_dB = 10 * log10(snr);
59
60 %%x = txFilter(modData, rolloff, span, sps);
61 %% Now, sum(abs(x) .^ 2) / length(x) should be 1.
62 %% We can set its power simply by multiplying.
63 %%x = sqrt(power(i)) * x;
64 txx = sig_x * sqrt(power(i));
65 txy = sig_y * sqrt(power(i));
66
67 rot_omega = 1e3; % rad/s
68 rot_phi = 2;
69 rot_x = txx .* cos(rot_omega * t) + ...
70 txy .* sin(rot_omega * t) * exp(-1j * rot_phi);
71 rot_y = txx .* -sin(rot_omega * t) * exp(1j * rot_phi) + ...
72 txy .* cos(rot_omega * t);
73
74 %% We can now do split-step Fourier.
75 gamma = 1.2; % watt^-1 / km
76
77 [xCDKerr, yCDKerr] = ssf_pdm(rot_x, rot_y, ...
78 D, lambda, z, Tsamp, gamma);
79
80 xpn = phaseNoise(xCDKerr, linewidthTx, linewidthLO, Tsamp);
81 ypn = phaseNoise(yCDKerr, linewidthTx, linewidthLO, Tsamp);
82
83 xout = awgn(xpn, snr_dB, 'measured', 'db');
84 yout = awgn(ypn, snr_dB, 'measured', 'db');
85
86 rx = rxFilter(xout, rolloff, span, sps);
87 ry = rxFilter(yout, rolloff, span, sps);
88 sps = 2;
89 Tsamp = Tsamp * 4;
90
91 rxCDComp = CDCompensation(rx, D, lambda, z, Tsamp);
92 ryCDComp = CDCompensation(ry, D, lambda, z, Tsamp);
93
94 rxSampled = rxCDComp(1:2:end);
95 rySampled = ryCDComp(1:2:end);
96
97 %% adaptive filter
98 [xCMA, yCMA] = pdm_adaptiveCMA(rxSampled, rySampled);
99
100 xpncorr = phaseNoiseCorr(xCMA, M, 0, 40).';
101 ypncorr = phaseNoiseCorr(yCMA, M, 0, 40).';
102
103 demodx = pskdemod(xpncorr, M, 0, 'gray');
104 remodx = pskmod(demodx, M, 0, 'gray');
105 delayx = [1; remodx(1:end-1)];
106 demodx = pskdemod(remodx .* conj(delayx), M, 0, 'gray');
107 clear remodx
108 clear delayx
109
110 demody = pskdemod(ypncorr, M, 0, 'gray');
111 remody = pskmod(demody, M, 0, 'gray');
112 delayy = [1; remody(1:end-1)];
113 demody = pskdemod(remody .* conj(delayy), M, 0, 'gray');
114 clear remody
115 clear delayy
116
117
118 [~, ber(i)] = biterr(data, [demodx; demody]);
119end
120
121ber
122
123figure;
124clf;
125
126%% Plot simulated results
127qp = 20 * log10(erfcinv(2*ber)*sqrt(2));
128plot(power_dBm, qp, 'Color', [0, 0.6, 0], 'LineWidth', 2);
129hold on;
130
131title({'CD + Kerr + CD compensation', ...
132 strcat(['$D = 17$ ps/(nm km), $z = ', num2str(z), '$ km'])});
133grid on;
134xlabel('Optical power (dBm)');
135ylabel('$20 \log_{10}\left(\sqrt{2}\mathrm{erfc}^{-1}(2 BER)\right)$');
136
137formatFigure;