numSymbs = 2^14; M = 4; Rsym = 2.5e10; % symbol rate (sym/sec) Tsym = 1 / Rsym; % symbol period (sec) rolloff = 0.25; span = 6; % filter span sps = 8; % samples per symbol fs = Rsym * sps; % sampling freq (Hz) Tsamp = 1 / fs; t = (0 : 1 / fs : numSymbs/2 / Rsym - 1/fs).'; power_dBm = -6:1:4; %%power_dBm = 0; power = 10 .^ (power_dBm / 10) * 1e-3; % watts Es = power * Tsym; % joules Eb = Es / log2(M); % joules N0ref_db = 10; % Eb/N0 at power = 1mW %% Fix N0, such that Eb/N0 = N0ref_db at power = 1mW N0 = 1e-3 * Tsym / (log2(M) * 10 ^ (N0ref_db / 10)); % joules %% At current settings, N0 = 0.002 pJ plotlen = length(power); ber = zeros(1, plotlen); data = randi([0 M - 1], numSymbs, 1); %%modData = dpskmod(data, M, 0, 'gray'); modData = pskmod(data, M, 0, 'gray'); for i = 2:numSymbs modData(i) = modData(i) * modData(i-1); end %% Chromatic dispersion D = 17; % ps / (nm km) lambda = 1550; % nm z = 100; % km linewidthTx = 0; % Hz linewidthLO = 1e6; % Hz TsampOrig = Tsamp; sig_x = txFilter(modData(1:numSymbs/2), rolloff, span, sps); sig_y = txFilter(modData(numSymbs/2+1:end), rolloff, span, sps); for i = 1:plotlen sps = 8; Tsamp = TsampOrig; snr = Es(i) / sps / N0; snr_dB = 10 * log10(snr); %%x = txFilter(modData, rolloff, span, sps); %% Now, sum(abs(x) .^ 2) / length(x) should be 1. %% We can set its power simply by multiplying. %%x = sqrt(power(i)) * x; txx = sig_x * sqrt(power(i)); txy = sig_y * sqrt(power(i)); rot_omega = 1e3; % rad/s rot_phi = 2; rot_x = txx .* cos(rot_omega * t) + ... txy .* sin(rot_omega * t) * exp(-1j * rot_phi); rot_y = txx .* -sin(rot_omega * t) * exp(1j * rot_phi) + ... txy .* cos(rot_omega * t); %% We can now do split-step Fourier. gamma = 1.2; % watt^-1 / km [xCDKerr, yCDKerr] = ssf_pdm(rot_x, rot_y, ... D, lambda, z, Tsamp, gamma); xpn = phaseNoise(xCDKerr, linewidthTx, linewidthLO, Tsamp); ypn = phaseNoise(yCDKerr, linewidthTx, linewidthLO, Tsamp); xout = awgn(xpn, snr_dB, 'measured', 'db'); yout = awgn(ypn, snr_dB, 'measured', 'db'); rx = rxFilter(xout, rolloff, span, sps); ry = rxFilter(yout, rolloff, span, sps); sps = 2; Tsamp = Tsamp * 4; rxCDComp = CDCompensation(rx, D, lambda, z, Tsamp); ryCDComp = CDCompensation(ry, D, lambda, z, Tsamp); rxSampled = rxCDComp(1:2:end); rySampled = ryCDComp(1:2:end); %% adaptive filter [xCMA, yCMA] = pdm_adaptiveCMA(rxSampled, rySampled); xpncorr = phaseNoiseCorr(xCMA, M, 0, 40).'; ypncorr = phaseNoiseCorr(yCMA, M, 0, 40).'; demodx = pskdemod(xpncorr, M, 0, 'gray'); remodx = pskmod(demodx, M, 0, 'gray'); delayx = [1; remodx(1:end-1)]; demodx = pskdemod(remodx .* conj(delayx), M, 0, 'gray'); clear remodx clear delayx demody = pskdemod(ypncorr, M, 0, 'gray'); remody = pskmod(demody, M, 0, 'gray'); delayy = [1; remody(1:end-1)]; demody = pskdemod(remody .* conj(delayy), M, 0, 'gray'); clear remody clear delayy [~, ber(i)] = biterr(data, [demodx; demody]); end ber figure; clf; %% Plot simulated results qp = 20 * log10(erfcinv(2*ber)*sqrt(2)); plot(power_dBm, qp, 'Color', [0, 0.6, 0], 'LineWidth', 2); hold on; title({'CD + Kerr + CD compensation', ... strcat(['$D = 17$ ps/(nm km), $z = ', num2str(z), '$ km'])}); grid on; xlabel('Optical power (dBm)'); ylabel('$20 \log_{10}\left(\sqrt{2}\mathrm{erfc}^{-1}(2 BER)\right)$'); formatFigure;