+++ /dev/null
-function RRC_PSK_BER_SNR(rolloff, M, numSymbs)
- %% Set defaults for inputs
- if nargin < 3
- numSymbs = 1000;
- end
- if nargin < 2
- M = 2;
- end
- if nargin < 1
- rolloff = 0.5;
- end
-
- if isOctave()
- pkg load communications
- end
-
- %% https://www.mathworks.com/help/signal/ref/rcosdesign.html
- %% https://www.mathworks.com/help/comm/ug/pulse-shaping-using-a-raised-cosine-filter.html
- span = 6; % filter span
- sps = 4;
-
- rrcFilter = rcosdesign(rolloff, span, sps, 'sqrt');
-
- EbN0_db = 0:0.2:10;
- EbN0 = 10 .^ (EbN0_db ./ 10);
-
- Es = 1;
- Eb = Es / log2(M);
- N0 = Eb ./ EbN0;
-
- EsN0 = EbN0 .* log2(M);
- EsN0_db = 10 .* log10(EsN0);
-
- plotlen = length(EbN0);
-
- ber = zeros(1, plotlen);
-
- data = randi([0 M - 1], numSymbs, 1);
- modData = pskmod(data, M, 0, 'gray');
-
- txSig = upfirdn(modData, rrcFilter, sps);
-
- for i = 1:plotlen
- snr = EbN0_db(i) + 10 * log10(log2(M));% - 10 * log10(sps); % why sps?
- rxSig = awgn(txSig, snr);
-
- rxFilt = upfirdn(rxSig, rrcFilter, 1, sps);
- rxFilt = rxFilt(span + 1 : end - span); % remove filter delay
-
- demodData = pskdemod(rxFilt, M, 0, 'gray');
-
- [bitErrors, ber(i)] = biterr(data, demodData);
- end
-
- fig1 = figure(1);
- clf;
-
- %% Plot simulated results
- semilogy(EbN0_db, ber, 'r', 'LineWidth', 2);
- hold on;
-
- %% Plot theoretical curve
- %% BPSK: bit error when noise Nr > sqrt(Eb)
- %% Pr(Nr > sqrt(Eb))
- %% = Pr(Z > sqrt(Eb) / sqrt(N0/2))
- %%
- %% QPSK = 2 BPSKs, one real and one imaginary, each with one bit
- %% so BER is the same as BPSK (assuming Gray code)
- if M == 2 || M == 4
- ber_th = qfunc(sqrt(2 * EbN0));
- semilogy(EbN0_db, ber_th, 'b', 'LineWidth', 1);
- legend('Simulated RRC', 'Discrete');
- else
- %% Approximation: J.G. Proakis and M. Salehi, 2000, Contemporary
- %% Communication Systems using MATLAB (Equations
- %% 7.3.18 and 7.3.19), Brooks/Cole.
- ber_ap = 2 * qfunc(sqrt(EbN0 * log2(M) * 2) * sin(pi / M)) / log2(M);
- semilogy(EbN0_db, ber_ap, 'b', 'LineWidth', 1);
- legend('Simulated RRC', 'Discrete');
- end
-
- title(strcat(num2str(M), '-PSK RRC with Gray code'));
- grid on;
- xlabel('$E_b/N_0$ (dB)');
- ylabel('BER');
-
- formatFigure;
- %saveas(gcf, strcat('BER_SNR_', num2str(M), 'PSK_', num2str(numSymbs), ...
- % '.svg'));
-
- %scatterplot(rxFilt);
- %eyediagram(rxFilt, sps);
-
-end
--- /dev/null
+function baseband(rolloff, M, numSymbs)
+ %% Set defaults for inputs
+ if nargin < 3
+ numSymbs = 1000;
+ end
+ if nargin < 2
+ M = 2;
+ end
+ if nargin < 1
+ rolloff = 0.5;
+ end
+
+
+ %% https://www.mathworks.com/help/comm/examples/passband-modulation-with-adjacent-channel-interference.html
+ Rsym = 1e6; % symbol rate (sym/sec)
+
+ span = 6; % filter span
+ sps = 4; % samples per symbol
+
+ txFilter = comm.RaisedCosineTransmitFilter...
+ ('Shape', 'Square root', ...
+ 'RolloffFactor', rolloff, ...
+ 'FilterSpanInSymbols', span, ...
+ 'OutputSamplesPerSymbol', sps);
+ rxFilter = comm.RaisedCosineReceiveFilter...
+ ('Shape', 'Square root', ...
+ 'RolloffFactor', rolloff, ...
+ 'FilterSpanInSymbols', span, ...
+ 'InputSamplesPerSymbol', sps, ...
+ 'DecimationFactor', 1);
+
+ fs = Rsym * sps; % sampling freq (Hz)
+
+ t = (0 : 1 / fs : numSymbs / Rsym + (1.5 * span * sps - 1) / fs)';
+
+
+ EbN0_db = 0:0.2:10;
+ EbN0 = 10 .^ (EbN0_db ./ 10);
+ Es = 1;
+ Eb = Es / log2(M);
+ N0 = Eb ./ EbN0;
+
+ EsN0 = EbN0 .* log2(M);
+ EsN0_db = 10 .* log10(EsN0);
+
+ plotlen = length(EbN0);
+ ber = zeros(1, plotlen);
+
+ data = randi([0 M - 1], numSymbs, 1);
+ modData = pskmod(data, M, 0, 'gray');
+
+ xBaseband = txFilter([modData; zeros(span, 1)]);
+
+
+
+ for i = 1:plotlen
+ snr = EbN0_db(i) + 10 * log10(log2(M)) - 10 * log10(sps); % why sps?
+ noiseEnergy = 10 ^ (-snr / 10);
+
+ yBaseband = awgn(xBaseband, snr, 'measured');
+
+ rBaseband = rxFilter([yBaseband; zeros(span, 1)]);
+ %% truncate filter transients
+ rBaseband = rBaseband(span * sps / 2 + 1 : end);
+ %% normalize to unit energy
+ rBasebandEnergy = sum(abs(rBaseband) .^ 2) / numSymbs;
+ rBaseband = rBaseband .* sqrt((1 + noiseEnergy) / rBasebandEnergy);
+
+ rSampled = rBaseband(sps*span/2+1:sps:(numSymbs+span/2)*sps);
+
+ demodData = pskdemod(rSampled, M, 0, 'gray');
+
+ [bitErrors, ber(i)] = biterr(data, demodData);
+ end
+
+ fig1 = figure(1);
+ clf;
+
+ %% Plot simulated results
+ semilogy(EbN0_db, ber, 'r', 'LineWidth', 2);
+ hold on;
+
+ %% Plot theoretical curve
+ %% BPSK: bit error when noise Nr > sqrt(Eb)
+ %% Pr(Nr > sqrt(Eb))
+ %% = Pr(Z > sqrt(Eb) / sqrt(N0/2))
+ %%
+ %% QPSK = 2 BPSKs, one real and one imaginary, each with one bit
+ %% so BER is the same as BPSK (assuming Gray code)
+ if M == 2 || M == 4
+ ber_th = qfunc(sqrt(2 * EbN0));
+ semilogy(EbN0_db, ber_th, 'b', 'LineWidth', 1);
+ legend('Simulated', 'Discrete');
+ else
+ %% Approximation: J.G. Proakis and M. Salehi, 2000, Contemporary
+ %% Communication Systems using MATLAB (Equations
+ %% 7.3.18 and 7.3.19), Brooks/Cole.
+ ber_ap = 2 * qfunc(sqrt(EbN0 * log2(M) * 2) * sin(pi / M)) / log2(M);
+ semilogy(EbN0_db, ber_ap, 'b', 'LineWidth', 1);
+ legend('Simulated', 'Discrete');
+ end
+
+ title(strcat(num2str(M), '-PSK with Gray code'));
+ grid on;
+ xlabel('$E_b/N_0$ (dB)');
+ ylabel('BER');
+
+ formatFigure;
+ %saveas(gcf, strcat('BER_SNR_', num2str(M), 'PSK_', num2str(numSymbs), ...
+ % '.svg'));
+
+ %scatterplot(rxFilt);
+ %eyediagram(rxFilt, sps);
+
+end
--- /dev/null
+function passband(rolloff, M, numSymbs)
+ %% Set defaults for inputs
+ if nargin < 3
+ numSymbs = 1000;
+ end
+ if nargin < 2
+ M = 2;
+ end
+ if nargin < 1
+ rolloff = 0.5;
+ end
+
+
+ %% https://www.mathworks.com/help/comm/examples/passband-modulation-with-adjacent-channel-interference.html
+ Rsym = 1e6; % symbol rate (sym/sec)
+
+ span = 6; % filter span
+ sps = 4; % samples per symbol
+
+ txFilter = comm.RaisedCosineTransmitFilter...
+ ('Shape', 'Square root', ...
+ 'RolloffFactor', rolloff, ...
+ 'FilterSpanInSymbols', span, ...
+ 'OutputSamplesPerSymbol', sps);
+ rxFilter = comm.RaisedCosineReceiveFilter...
+ ('Shape', 'Square root', ...
+ 'RolloffFactor', rolloff, ...
+ 'FilterSpanInSymbols', span, ...
+ 'InputSamplesPerSymbol', sps, ...
+ 'DecimationFactor', 1);
+
+ fs = Rsym * sps; % sampling freq (Hz)
+
+ t = (0 : 1 / fs : numSymbs / Rsym + (1.5 * span * sps - 1) / fs)';
+
+
+
+
+ EbN0_db = 0:0.2:10;
+ EbN0 = 10 .^ (EbN0_db ./ 10);
+
+ Es = 1;
+ Eb = Es / log2(M);
+ N0 = Eb ./ EbN0;
+
+ EsN0 = EbN0 .* log2(M);
+ EsN0_db = 10 .* log10(EsN0);
+
+ plotlen = length(EbN0);
+
+ ber = zeros(1, plotlen);
+
+
+
+
+ data = randi([0 M - 1], numSymbs, 1);
+ modData = pskmod(data, M, 0, 'gray');
+
+ xBaseband = txFilter([modData; zeros(span, 1)]);
+
+ %fc = 2.5e6; % Carrier freq (Hz)
+ %carrier = sqrt(2) * exp(j * 2 * pi * fc * t);
+
+ %xPassbandIdeal = normalizeEnergy...
+ % (real(xBaseband .* carrier(1:length(xBaseband))), numSymbs, 1);
+
+ txLOFreq = [2.49e6, 2.5e6, 2.51e6];
+ %%txLOEnergy = [0.05, 0.9, 0.05];
+ txLOEnergy = [0 1 0];
+
+ carrier = zeros(length(t), 1);
+ for i = 1 : length(txLOFreq)
+ carrier = carrier + ...
+ sqrt(2 * txLOEnergy(i)) * exp(j * 2 * pi * txLOFreq(i) * t);
+ end
+
+ xPassband = normalizeEnergy...
+ (real(xBaseband .* carrier(1:length(xBaseband))), numSymbs, 1);
+
+ sum(abs(xPassband) .^ 2) / numSymbs
+ input('pause')
+
+
+ for i = 1:plotlen
+ snr = EbN0_db(i) + 10 * log10(log2(M)) - 10 * log10(sps); % why sps?
+ noiseEnergy = 10 ^ (-snr / 10);
+
+
+ yPassband = awgn(xPassband, snr, 'measured');
+
+
+ rBaseband = rxFilter([yPassband .* carrier(1:length(yPassband)); zeros(span * sps, 1)]);
+ %% truncate filter transients
+ rBaseband = rBaseband(span * sps / 2 + 1 : end);
+ %% normalize energy
+ rBaseband = normalizeEnergy(rBaseband, numSymbs, 1 + noiseEnergy);
+
+
+ rSampled = rBaseband(sps*span/2+1:sps:(numSymbs + span/2) * sps);
+
+ demodData = pskdemod(rSampled, M, 0, 'gray');
+ [bitErrors, ber(i)] = biterr(data, demodData);
+
+ end
+
+ fig1 = figure(1);
+ clf;
+
+ %% Plot simulated results
+ semilogy(EbN0_db, ber, 'r', 'LineWidth', 2);
+ hold on;
+
+ %% Plot theoretical curve
+ %% BPSK: bit error when noise Nr > sqrt(Eb)
+ %% Pr(Nr > sqrt(Eb))
+ %% = Pr(Z > sqrt(Eb) / sqrt(N0/2))
+ %%
+ %% QPSK = 2 BPSKs, one real and one imaginary, each with one bit
+ %% so BER is the same as BPSK (assuming Gray code)
+ if M == 2 || M == 4
+ ber_th = qfunc(sqrt(2 * EbN0));
+ semilogy(EbN0_db, ber_th, 'b', 'LineWidth', 1);
+ legend('Simulated RRC', 'Discrete');
+ else
+ %% Approximation: J.G. Proakis and M. Salehi, 2000, Contemporary
+ %% Communication Systems using MATLAB (Equations
+ %% 7.3.18 and 7.3.19), Brooks/Cole.
+ ber_ap = 2 * qfunc(sqrt(EbN0 * log2(M) * 2) * sin(pi / M)) / log2(M);
+ semilogy(EbN0_db, ber_ap, 'b', 'LineWidth', 1);
+ legend('Simulated RRC', 'Discrete');
+ end
+
+ title(strcat(num2str(M), '-PSK RRC with Gray code'));
+ grid on;
+ xlabel('$E_b/N_0$ (dB)');
+ ylabel('BER');
+
+ formatFigure;
+ %saveas(gcf, strcat('BER_SNR_', num2str(M), 'PSK_', num2str(numSymbs), ...
+ % '.svg'));
+
+ %scatterplot(rxFilt);
+ %eyediagram(rxFilt, sps);
+
+end
+
+
+function y = normalizeEnergy(x, numSymbs, e)
+ energy = sum(abs(x) .^ 2) / numSymbs;
+ y = x * sqrt(e / energy);
+end