numSymbs = 5e4; M = 4; Rsym = 2.5e10; % symbol rate (sym/sec) Tsym = 1 / Rsym; % symbol period (sec) rolloff = 0.25; span = 6; % filter span sps = 2; % samples per symbol fs = Rsym * sps; % sampling freq (Hz) Tsamp = 1 / fs; t = (0 : 1 / fs : numSymbs / Rsym + (1.5 * span * sps - 1) / fs).'; power_dBm = -3:0.25:4; power = 10 .^ (power_dBm / 10) * 1e-3; % watts Es = power * Tsym; % joules Eb = Es / log2(M); % joules N0ref_dB = 10; % Eb/N0 at power = 1mW %% Fix N0, such that Eb/N0 = N0ref_dB at power = 1mW N0 = 1e-3 * Tsym / (log2(M) * 10 ^ (N0ref_dB / 10)); % joules plotlen = length(power); ber = zeros(1, plotlen); data = randi([0 M - 1], numSymbs, 1); modData = pskmod(data, M, pi / M, 'gray'); %% Chromatic dispersion D = 17; % ps / (nm km) lambda = 1550; % nm z = 600; % km for i = 1:plotlen snr = Es(i) / sps / N0; snr_dB = 10 * log10(snr); x = txFilter(modData, rolloff, span, sps); %% Now, sum(abs(x) .^ 2) / length(x) should be 1. %% We can set its power simply by multiplying. x = sqrt(power(i)) * x; %% We can now do split-step Fourier. gamma = 1.2; % watt^-1 / km %%stepnum = round(40 * z * gamma); % Nonlinear Fiber optics, App B stepnum = 100; xCD = splitstepfourier(x, D, lambda, z, Tsamp, gamma, stepnum); y = awgn(xCD, snr, power(i), 'linear'); %%y = xCD; r = rxFilter(y, rolloff, span, sps); rCDComp = CDCompensation(r, D, lambda, z, Tsamp); rCDComp = normalizeEnergy(rCDComp, numSymbs*sps, 1); rSampled = rCDComp(sps*span/2+1:sps:(numSymbs+span/2)*sps); rNoCompSampled = r(sps*span/2+1:sps:(numSymbs+span/2)*sps); %% rotate rNoCompSampled to match original data theta = angle(-sum(rNoCompSampled .^ M)) / M; %% if theta approx +pi/M, wrap to -pi/M if abs(theta - pi / M) / (pi / M) < 0.1 theta = -pi / M; end rNoCompSampled = rNoCompSampled .* exp(-j * theta); %% Not entirely sure why, but after using FFT instead of time-domain %% convolution for simulating CD, we now need to do the same rotation %% for rSampled as well, but this time with a positive rotation. theta = angle(-sum(rSampled .^ M)) / M; if abs(theta + pi / M) / (pi / M) < 0.1 theta = +pi / M; end rSampled = rSampled .* exp(-1j * theta); %% adaptive filter adaptFilterOut = adaptiveCMA(rSampled); demodAdapt = pskdemod(adaptFilterOut, M, pi / M, 'gray'); [~, ber(i)] = biterr(data, demodAdapt); end figure(1); clf; %% Plot simulated results semilogy(power_dBm, ber, 'Color', [0, 0.6, 0], 'LineWidth', 2); hold on; title({'CD + Kerr + CD compensation', ... strcat(['$D = 17$ ps/(nm km), $z = ', num2str(z), '$ km']), ... strcat(['$E_b/N_0 = ', num2str(N0ref_dB), '$ dB at 1 mW'])}); grid on; xlabel('Optical power (dBm)'); ylabel('BER'); formatFigure;