function discretePSK_BER_SNR(M, numBits) %% Set defaults for inputs if nargin < 2 numBits = 1000; end if nargin < 1 M = 2; end if isOctave() pkg load communications end EbN0_db = 0:0.2:10; EbN0 = 10 .^ (EbN0_db ./ 10); Es = 1; Eb = Es / log2(M); N0 = Eb ./ EbN0; EsN0 = EbN0 .* log2(M); EsN0_db = 10 .* log10(EsN0); plotlen = length(EbN0); ber = zeros(1, plotlen); data = randi([0, M - 1], 1, numBits); txsig = pskmod(data, M, 0, 'gray'); for i = 1:plotlen rxsig = awgn(txsig, EsN0_db(i)); demodData = pskdemod(rxsig, M, 0, 'gray'); [bitErrors, ber(i)] = biterr(data, demodData); end fig1 = figure(1); clf; %% Plot simulated results semilogy(EbN0_db, ber, 'r', 'LineWidth', 2); hold on; %% Plot theoretical curve %% BPSK: bit error when noise Nr > sqrt(Eb) %% Pr(Nr > sqrt(Eb)) %% = Pr(Z > sqrt(Eb) / sqrt(N0/2)) %% %% QPSK = 2 BPSKs, one real and one imaginary, each with one bit %% so BER is the same as BPSK (assuming Gray code) if M == 2 || M == 4 ber_th = qfunc(sqrt(2 * EbN0)); semilogy(EbN0_db, ber_th, 'b', 'LineWidth', 1); legend('Simulated', 'Theoretical'); else %% Upper bound: R. Venkataramanan, Lent 2018, 3F4 Examples Paper 2 %% (Question 5), CUED. %% Approximation: J.G. Proakis and M. Salehi, 2000, Contemporary %% Communication Systems using MATLAB (Equations %% 7.3.18 and 7.3.19), Brooks/Cole. ber_ub = 2 * qfunc(sqrt(EbN0 * log2(M)) * sin(pi / M)); ber_ap = 2 * qfunc(sqrt(EbN0 * log2(M) * 2) * sin(pi / M)) / log2(M); semilogy(EbN0_db, ber_ub, 'b', 'LineWidth', 1); semilogy(EbN0_db, ber_ap, 'g', 'LineWidth', 1); legend('Simulated', 'Upper bound', 'Approximation'); end title(strcat(num2str(M), '-PSK with Gray code')); grid on; xlabel('$E_b/N_0$ (dB)'); ylabel('BER'); formatFigure; saveas(gcf, strcat('BER_SNR_', num2str(M), 'PSK_', num2str(numBits), ... '.svg')); end