100 GbE Passive Optical Access Networks

Adrian Lam (ail30)

Supervised by: Dr. Seb Savory

Michaelmas 2018

A. Lam (ail30)

100 GbE PON

What is a passive optical network (PON)?

- Point-to-multipoint
- Unpowered beam splitter
- "Everything sent to everyone"

Key: A - Data or voice for a single customer. Video for multiple customers.

Image credit: Riick[~]commonswiki, "PON vs AON.png". CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:PON_vs_AON.png. Cropped.

- Fibre-to-the-home?
- Well-served by 1 Gb/s PON, mature (mass deployment > 1 decade)

- Fibre-to-the-home?
- Well-served by $1 \,\text{Gb/s}$ PON, mature (mass deployment > 1 decade)
- Reuse existing fibres in other applications
- Mobile
 - $\bullet\,$ Increase density in cell sites $\to\, {\rm PON}$ to deliver backhaul
 - Possible 5G fronthaul: radio receivers sample RF signals and relay them to centralized location for processing

- Direct detection receiver
 - Single photodiode with amplifier
 - Rx current \propto received optical power (Phase information lost)
 - On-off keying (mainly)
- Coherent receiver
 - $\bullet \propto$ real and imaginary parts of received electrical field
 - Polarization-division multiplexing
 - Phase-shift keying, quadrature amplitude modulation

Image credit: Seb J. Savory, "Digital filters for coherent optical receivers," 2008.

A. Lam (ail30)

- Build simulation models for optical networks with coherent receivers
- Use DSP to correct for fibre effects
- Simulate different options for achieving 100 Gb/s
- Experimentally validate simulation results
- Evaluate feasibility to use in PONs

<code>QPSK</code> with symbol rate 25 GBd over AWGN channel

- Chromatic dispersion
- Adaptive equalizer
- Phase noise (laser linewidth)

$$x_n \longrightarrow \underbrace{\text{Pulse shaping}}_{p(t)} \underbrace{x(t) + \cdots + r(t)}_{r(t)} ? \xrightarrow{y(t)}_{r(t)}$$

$$y(t) \xrightarrow{\text{Matched filter}}_{q(t) = p(-t)} \underbrace{r(t)}_{T_s = 1/R_{\text{sym}}} \underbrace{r_n}_{r'} ?' \xrightarrow{\text{Decision}} \hat{x}_n$$

- Group speed of light varies with wavelength
- Modelled as linear system, impulse response:

$$g(z, t) = \sqrt{\frac{c}{\mathrm{j}D\lambda^2 z}} \exp\left(\mathrm{j}\frac{\pi c}{D\lambda^2 z}t^2\right)$$

- Group speed of light varies with wavelength
- Modelled as linear system, impulse response:

$$g(z,t) = \sqrt{\frac{c}{\mathrm{j}D\lambda^2 z}}\exp\left(\mathrm{j}\frac{\pi c}{D\lambda^2 z}t^2\right)$$

- Group speed of light varies with wavelength
- Modelled as linear system, impulse response:

$$g(z,t) = \sqrt{\frac{c}{\mathrm{j}D\lambda^2 z}}\exp\left(\mathrm{j}\frac{\pi c}{D\lambda^2 z}t^2\right)$$

- Group speed of light varies with wavelength
- Modelled as linear system, impulse response:

$$g(z,t) = \sqrt{\frac{c}{\mathrm{j}D\lambda^2 z}}\exp\left(\mathrm{j}\frac{\pi c}{D\lambda^2 z}t^2\right)$$

Chromatic dispersion compensation

$$g_{\mathsf{c}}(z,t) = \sqrt{rac{c}{\mathrm{j}(-D)\lambda^2 z}} \exp\left(\mathrm{j}rac{\pi c}{(-D)\lambda^2 z}t^2
ight)$$

A. Lam (ail30)

M 2018 8 / 15

Chromatic dispersion compensation

A. Lam (ail30)

100 GbE PON

M 2018 8 / 15

Chromatic dispersion compensation

A. Lam (ail30)

100 GbE PON

M 2018 8 / 15

- Error of previous symbol fed back to change filter tap weights
- Can correct for static and time-varying effects
- Constant modulus algorithm (CMA)
- For PSK, magnitude of transmitted symbols is constant (unity)
- Error signal is distance of received signal from unit circle

A. Lam (ail30)

100 GbE PON

A. Lam (ail30)

Laser phase noise

- Laser linewidth: deviations from the nominal wavelength
- Instantaneous change in wavelength (frequency) \rightarrow change in phase

• $\phi[k]$ modelled as one-dimensional Gaussian random walk / [/]

$$\varphi[\mathbf{k}] = \varphi[\mathbf{k} - \mathbf{I}] + \Delta \varphi$$
where $\Delta \phi \sim \mathcal{N}(0, 2\pi \Delta \nu T_s)$
Phase noise of lasers with different linewidths
$$\frac{1}{1.5} - \frac{1}{0.5} - \frac{1}{0.2} - \frac{1}{0.4} - \frac{1}{0.6} - \frac{1}{0.8} - \frac{1}{1}$$
Time / s $\times 10^{-8}$

A¶ ▶ <

Laser phase noise

- Rotates symbol constellation
- Problematic, e.g. for QPSK, rotation by $\pi/2$ gives another constellation with all symbols decoded wrongly

A. Lam (ail30)

- Differential PSK
- Information encoded as the difference in phase with previous symbol
- Difference in phase noise between consecutive symbols small
- 2 dB penalty at $BER = 10^{-3}$

- Estimate phase noise by Viterbi-Viterbi algorithm
- Taking average over a small block of samples

- At large linewidths, Viterbi-Viterbi algorithm can make mistakes
- For QPSK the phase estimate can be off by *pi*/2
- All subsequent symbols will be decoded incorrectly

- At large linewidths, Viterbi-Viterbi algorithm can make mistakes
- For QPSK the phase estimate can be off by *pi*/2
- All subsequent symbols will be decoded incorrectly

- At large linewidths, Viterbi-Viterbi algorithm can make mistakes
- For QPSK the phase estimate can be off by *pi*/2
- All subsequent symbols will be decoded incorrectly
- Solution: Differential encoding

- At large linewidths, Viterbi-Viterbi algorithm can make mistakes
- For QPSK the phase estimate can be off by *pi*/2
- All subsequent symbols will be decoded incorrectly
- Solution: Differential encoding

- Integrating CD and phase noise into a single system
- Adaptive equalizer
 - Decision-directed algorithms
 - Training sequences
- QAM
- Polarization-division multiplexing
 - Polarization mode dispersion
 - Adaptive equalizer
- Non-linear effects

Assume $\hat{\phi} \approx \phi[1] \approx \phi[2] \approx \cdots \approx \phi[N]$

$$r[k] = \exp\left(j\phi[k] + j\frac{\pi}{4} + j\frac{d[k]\pi}{2}\right) + n[k]$$
$$r[k]^4 = \exp\left(j4\phi[k] + j\pi\right) + n'[k]$$
$$\sum_{k=1}^{N} r[k]^4 \approx N \exp\left(j4\hat{\phi} + j\pi\right) + n''$$

$$\hat{\phi} \approx \frac{1}{4} \arg \left(-\sum_{k=1}^{N} r[k]^4 \right)$$

< □ > < 同 > < 回 > < Ξ > < Ξ