Working Kerr effect; PDM; speedups; removed unused files
[4yp.git] / channel.m
CommitLineData
5fae0077
AIL
1numSymbs = 2^16;
2M = 4;
3
4Rsym = 2.5e10; % symbol rate (sym/sec)
5Tsym = 1 / Rsym; % symbol period (sec)
6
7rolloff = 0.25;
8span = 6; % filter span
9sps = 8; % samples per symbol
10
11fs = Rsym * sps; % sampling freq (Hz)
12Tsamp = 1 / fs;
13
14t = (0 : 1 / fs : numSymbs / Rsym + (1.5 * span * sps - 1) / fs).';
15
16power_dBm = -6:1:4;
17%%power_dBm = 0;
18power = 10 .^ (power_dBm / 10) * 1e-3; % watts
19
20Es = power * Tsym; % joules
21Eb = Es / log2(M); % joules
22
23N0ref_db = 10; % Eb/N0 at power = 1mW
24%% Fix N0, such that Eb/N0 = N0ref_db at power = 1mW
25N0 = 1e-3 * Tsym / (log2(M) * 10 ^ (N0ref_db / 10)); % joules
26%% At current settings, N0 = 0.002 pJ
27
28plotlen = length(power);
29
30ber = zeros(1, plotlen);
31
32data = randi([0 M - 1], numSymbs, 1);
33%%modData = dpskmod(data, M, 0, 'gray');
34modData = pskmod(data, M, 0, 'gray');
35for i = 2:numSymbs
36 modData(i) = modData(i) * modData(i-1);
37end
38
39
40%% Chromatic dispersion
41D = 17; % ps / (nm km)
42lambda = 1550; % nm
43z = 100; % km
44
45
46linewidthTx = 0; % Hz
47linewidthLO = 1e6; % Hz
48
49
50TsampOrig = Tsamp;
51
52x_P1 = txFilter(modData, rolloff, span, sps);
53
54
55for i = 1:plotlen
56 sps = 8;
57 Tsamp = TsampOrig;
58
59 snr = Es(i) / sps / N0;
60 snr_dB = 10 * log10(snr);
61
62 %%x = txFilter(modData, rolloff, span, sps);
63 %% Now, sum(abs(x) .^ 2) / length(x) should be 1.
64 %% We can set its power simply by multiplying.
65 x = sqrt(power(i)) * x_P1;
66
67 %% We can now do split-step Fourier.
68 gamma = 1.2; % watt^-1 / km
69
70
71 xCDKerr = splitstepfourier(x, D, lambda, z, Tsamp, gamma);
72
73 xpn = phaseNoise(xCDKerr, linewidthTx, linewidthLO, Tsamp);
74
75 y = awgn(xpn, snr_dB, 'measured', 'db');
76 %y = xCDKerr;
77
78 r = rxFilter(y, rolloff, span, sps);
79 sps = 2;
80 Tsamp = Tsamp * 4;
81
82 rCDComp = CDCompensation(r, D, lambda, z, Tsamp);
83 rCDComp = normalizeEnergy(rCDComp, numSymbs * sps, 1);
84
85 rSampled = rCDComp(2:2:end);
86
87 %% adaptive filter
88 [adaptFilterOut, convergeIdx] = adaptiveCMA(rSampled);
89
90 pncorr = phaseNoiseCorr(adaptFilterOut, M, 0, 40).';
91
92 demodAdapt = pskdemod(pncorr, M, 0, 'gray');
93 remod = pskmod(demodAdapt, M, 0, 'gray');
94 delayed = [1; remod(1:end-1)];
95 demod = pskdemod(remod .* conj(delayed), M, 0, 'gray');
96
97 if convergeIdx < Inf
98 [~, ber(i)] = biterr(data(convergeIdx:end), demod(convergeIdx:end));
99 else
100 [~, ber(i)] = biterr...
101 (data(ceil(0.8*numSymbs):end), ...
102 demod(ceil(0.8*numSymbs):end));
103 end
104end
105
106ber
107
108
109figure(1);
110clf;
111
112%% Plot simulated results
113qp = 20 * log10(erfcinv(2*ber)*sqrt(2));
114plot(power_dBm, qp, 'Color', [0, 0.6, 0], 'LineWidth', 2);
115hold on;
116
117title({'CD + Kerr + CD compensation', ...
118 strcat(['$D = 17$ ps/(nm km), $z = ', num2str(z), '$ km'])});
119grid on;
120xlabel('Optical power (dBm)');
121ylabel('$20 \log_{10}\left(\sqrt{2}\mathrm{erfc}^{-1}(2 BER)\right)$');
122
123formatFigure;