Added baseband and passband simulations. Passband is buggy.
[4yp.git] / baseband.m
CommitLineData
8449f934
AIL
1function baseband(rolloff, M, numSymbs)
2 %% Set defaults for inputs
3 if nargin < 3
4 numSymbs = 1000;
5 end
6 if nargin < 2
7 M = 2;
8 end
9 if nargin < 1
10 rolloff = 0.5;
11 end
12
13
14 %% https://www.mathworks.com/help/comm/examples/passband-modulation-with-adjacent-channel-interference.html
15 Rsym = 1e6; % symbol rate (sym/sec)
16
17 span = 6; % filter span
18 sps = 4; % samples per symbol
19
20 txFilter = comm.RaisedCosineTransmitFilter...
21 ('Shape', 'Square root', ...
22 'RolloffFactor', rolloff, ...
23 'FilterSpanInSymbols', span, ...
24 'OutputSamplesPerSymbol', sps);
25 rxFilter = comm.RaisedCosineReceiveFilter...
26 ('Shape', 'Square root', ...
27 'RolloffFactor', rolloff, ...
28 'FilterSpanInSymbols', span, ...
29 'InputSamplesPerSymbol', sps, ...
30 'DecimationFactor', 1);
31
32 fs = Rsym * sps; % sampling freq (Hz)
33
34 t = (0 : 1 / fs : numSymbs / Rsym + (1.5 * span * sps - 1) / fs)';
35
36
37 EbN0_db = 0:0.2:10;
38 EbN0 = 10 .^ (EbN0_db ./ 10);
39 Es = 1;
40 Eb = Es / log2(M);
41 N0 = Eb ./ EbN0;
42
43 EsN0 = EbN0 .* log2(M);
44 EsN0_db = 10 .* log10(EsN0);
45
46 plotlen = length(EbN0);
47 ber = zeros(1, plotlen);
48
49 data = randi([0 M - 1], numSymbs, 1);
50 modData = pskmod(data, M, 0, 'gray');
51
52 xBaseband = txFilter([modData; zeros(span, 1)]);
53
54
55
56 for i = 1:plotlen
57 snr = EbN0_db(i) + 10 * log10(log2(M)) - 10 * log10(sps); % why sps?
58 noiseEnergy = 10 ^ (-snr / 10);
59
60 yBaseband = awgn(xBaseband, snr, 'measured');
61
62 rBaseband = rxFilter([yBaseband; zeros(span, 1)]);
63 %% truncate filter transients
64 rBaseband = rBaseband(span * sps / 2 + 1 : end);
65 %% normalize to unit energy
66 rBasebandEnergy = sum(abs(rBaseband) .^ 2) / numSymbs;
67 rBaseband = rBaseband .* sqrt((1 + noiseEnergy) / rBasebandEnergy);
68
69 rSampled = rBaseband(sps*span/2+1:sps:(numSymbs+span/2)*sps);
70
71 demodData = pskdemod(rSampled, M, 0, 'gray');
72
73 [bitErrors, ber(i)] = biterr(data, demodData);
74 end
75
76 fig1 = figure(1);
77 clf;
78
79 %% Plot simulated results
80 semilogy(EbN0_db, ber, 'r', 'LineWidth', 2);
81 hold on;
82
83 %% Plot theoretical curve
84 %% BPSK: bit error when noise Nr > sqrt(Eb)
85 %% Pr(Nr > sqrt(Eb))
86 %% = Pr(Z > sqrt(Eb) / sqrt(N0/2))
87 %%
88 %% QPSK = 2 BPSKs, one real and one imaginary, each with one bit
89 %% so BER is the same as BPSK (assuming Gray code)
90 if M == 2 || M == 4
91 ber_th = qfunc(sqrt(2 * EbN0));
92 semilogy(EbN0_db, ber_th, 'b', 'LineWidth', 1);
93 legend('Simulated', 'Discrete');
94 else
95 %% Approximation: J.G. Proakis and M. Salehi, 2000, Contemporary
96 %% Communication Systems using MATLAB (Equations
97 %% 7.3.18 and 7.3.19), Brooks/Cole.
98 ber_ap = 2 * qfunc(sqrt(EbN0 * log2(M) * 2) * sin(pi / M)) / log2(M);
99 semilogy(EbN0_db, ber_ap, 'b', 'LineWidth', 1);
100 legend('Simulated', 'Discrete');
101 end
102
103 title(strcat(num2str(M), '-PSK with Gray code'));
104 grid on;
105 xlabel('$E_b/N_0$ (dB)');
106 ylabel('BER');
107
108 formatFigure;
109 %saveas(gcf, strcat('BER_SNR_', num2str(M), 'PSK_', num2str(numSymbs), ...
110 % '.svg'));
111
112 %scatterplot(rxFilt);
113 %eyediagram(rxFilt, sps);
114
115end