return this.__repr__();
};
-/**
- * Formatting to use for an integer number.
- *
- * @param {Number} x The number to format
- * @param {Number} unused_precision The precision to use, ignored.
- * @return {String} A string formatted like %g in printf. The max generated
- * string length should be precision + 6 (e.g 1.123e+300).
- */
-Dygraph.intFormat = function(x, unused_precision) {
- return x.toString();
-}
-
-/**
- * Number formatting function which mimicks the behavior of %g in printf, i.e.
- * either exponential or fixed format (without trailing 0s) is used depending on
- * the length of the generated string. The advantage of this format is that
- * there is a predictable upper bound on the resulting string length,
- * significant figures are not dropped, and normal numbers are not displayed in
- * exponential notation.
- *
- * NOTE: JavaScript's native toPrecision() is NOT a drop-in replacement for %g.
- * It creates strings which are too long for absolute values between 10^-4 and
- * 10^-6. See tests/number-format.html for output examples.
- *
- * @param {Number} x The number to format
- * @param {Number} opt_precision The precision to use, default 2.
- * @return {String} A string formatted like %g in printf. The max generated
- * string length should be precision + 6 (e.g 1.123e+300).
- */
-Dygraph.floatFormat = function(x, opt_precision) {
- // Avoid invalid precision values; [1, 21] is the valid range.
- var p = Math.min(Math.max(1, opt_precision || 2), 21);
-
- // This is deceptively simple. The actual algorithm comes from:
- //
- // Max allowed length = p + 4
- // where 4 comes from 'e+n' and '.'.
- //
- // Length of fixed format = 2 + y + p
- // where 2 comes from '0.' and y = # of leading zeroes.
- //
- // Equating the two and solving for y yields y = 2, or 0.00xxxx which is
- // 1.0e-3.
- //
- // Since the behavior of toPrecision() is identical for larger numbers, we
- // don't have to worry about the other bound.
- //
- // Finally, the argument for toExponential() is the number of trailing digits,
- // so we take off 1 for the value before the '.'.
- return (Math.abs(x) < 1.0e-3 && x != 0.0) ?
- x.toExponential(p - 1) : x.toPrecision(p);
-};
-
// Various default values
Dygraph.DEFAULT_ROLL_PERIOD = 1;
Dygraph.DEFAULT_WIDTH = 480;
labelsKMG2: false,
showLabelsOnHighlight: true,
- yValueFormatter: function(x, opt_precision) {
- var s = Dygraph.floatFormat(x, opt_precision);
- var s2 = Dygraph.intFormat(x);
- return s.length < s2.length ? s : s2;
- },
+ yValueFormatter: function(x) { return Dygraph.round_(x, 2); },
strokeWidth: 1.0,
this.zoomed_x_ = false;
this.zoomed_y_ = false;
- // Number of digits to use when labeling the x (if numeric) and y axis
- // ticks.
- this.numXDigits_ = 2;
- this.numYDigits_ = 2;
-
- // When labeling x (if numeric) or y values in the legend, there are
- // numDigits + numExtraDigits of precision used. For axes labels with N
- // digits of precision, the data should be displayed with at least N+1 digits
- // of precision. The reason for this is to divide each interval between
- // successive ticks into tenths (for 1) or hundredths (for 2), etc. For
- // example, if the labels are [0, 1, 2], we want data to be displayed as
- // 0.1, 1.3, etc.
- this.numExtraDigits_ = 1;
-
// Clear the div. This ensure that, if multiple dygraphs are passed the same
// div, then only one will be drawn.
div.innerHTML = "";
return html;
}
- var displayDigits = this.numXDigits_ + this.numExtraDigits_;
- var html = this.attr_('xValueFormatter')(x, displayDigits) + ":";
+ var html = this.attr_('xValueFormatter')(x) + ":";
var fmtFunc = this.attr_('yValueFormatter');
var showZeros = this.attr_("labelsShowZeroValues");
if (sepLines) html += "<br/>";
var c = new RGBColor(this.plotter_.colors[pt.name]);
- var yval = fmtFunc(pt.yval, displayDigits);
+ var yval = fmtFunc(pt.yval);
// TODO(danvk): use a template string here and make it an attribute.
html += " <b><font color='" + c.toHex() + "'>"
+ pt.name + "</font></b>:"
};
/**
+ * Round a number to the specified number of digits past the decimal point.
+ * @param {Number} num The number to round
+ * @param {Number} places The number of decimals to which to round
+ * @return {Number} The rounded number
+ * @private
+ */
+Dygraph.round_ = function(num, places) {
+ var shift = Math.pow(10, places);
+ return Math.round(num * shift)/shift;
+};
+
+/**
* Fires when there's data available to be graphed.
* @param {String} data Raw CSV data to be plotted
* @private
range = [this.rawData_[0][0], this.rawData_[this.rawData_.length - 1][0]];
}
- var formatter = this.attr_('xTicker');
- var ret = formatter(range[0], range[1], this);
- var xTicks = [];
-
- // Note: numericTicks() returns a {ticks: [...], numDigits: yy} dictionary,
- // whereas dateTicker and user-defined tickers typically just return a ticks
- // array.
- if (ret.ticks !== undefined) {
- xTicks = ret.ticks;
- this.numXDigits_ = ret.numDigits;
- } else {
- xTicks = ret;
- }
-
+ var xTicks = this.attr_('xTicker')(range[0], range[1], this);
this.layout_.updateOptions({xTicks: xTicks});
};
};
/**
- * Determine the number of significant figures in a Number up to the specified
- * precision. Note that there is no way to determine if a trailing '0' is
- * significant or not, so by convention we return 1 for all of the following
- * inputs: 1, 1.0, 1.00, 1.000 etc.
- * @param {Number} x The input value.
- * @param {Number} opt_maxPrecision Optional maximum precision to consider.
- * Default and maximum allowed value is 13.
- * @return {Number} The number of significant figures which is >= 1.
- */
-Dygraph.significantFigures = function(x, opt_maxPrecision) {
- var precision = Math.max(opt_maxPrecision || 13, 13);
-
- // Convert the number to its exponential notation form and work backwards,
- // ignoring the 'e+xx' bit. This may seem like a hack, but doing a loop and
- // dividing by 10 leads to roundoff errors. By using toExponential(), we let
- // the JavaScript interpreter handle the low level bits of the Number for us.
- var s = x.toExponential(precision);
- var ePos = s.lastIndexOf('e'); // -1 case handled by return below.
-
- for (var i = ePos - 1; i >= 0; i--) {
- if (s[i] == '.') {
- // Got to the decimal place. We'll call this 1 digit of precision because
- // we can't know for sure how many trailing 0s are significant.
- return 1;
- } else if (s[i] != '0') {
- // Found the first non-zero digit. Return the number of characters
- // except for the '.'.
- return i; // This is i - 1 + 1 (-1 is for '.', +1 is for 0 based index).
- }
- }
-
- // Occurs if toExponential() doesn't return a string containing 'e', which
- // should never happen.
- return 1;
-};
-
-/**
* Add ticks when the x axis has numbers on it (instead of dates)
* TODO(konigsberg): Update comment.
*
var formatter = attr('yAxisLabelFormatter') ?
attr('yAxisLabelFormatter') : attr('yValueFormatter');
- // Determine the number of decimal places needed for the labels below by
- // taking the maximum number of significant figures for any label. We must
- // take the max because we can't tell if trailing 0s are significant.
- var numDigits = 0;
- for (var i = 0; i < ticks.length; i++) {
- numDigits = Math.max(Dygraph.significantFigures(ticks[i].v), numDigits);
- }
-
// Add labels to the ticks.
for (var i = 0; i < ticks.length; i++) {
if (ticks[i].label !== undefined) continue; // Use current label.
var tickV = ticks[i].v;
var absTickV = Math.abs(tickV);
var label = (formatter !== undefined) ?
- formatter(tickV, numDigits) : tickV.toPrecision(numDigits);
+ formatter(tickV) : Dygraph.round_(tickV, 2);
if (k_labels.length > 0) {
// Round up to an appropriate unit.
var n = k*k*k*k;
for (var j = 3; j >= 0; j--, n /= k) {
if (absTickV >= n) {
- label = formatter(tickV / n, numDigits) + k_labels[j];
+ label = Dygraph.round_(tickV / n, 1) + k_labels[j];
break;
}
}
ticks[i].label = label;
}
- return {ticks: ticks, numDigits: numDigits};
+ return ticks;
};
// Computes the range of the data series (including confidence intervals).
// primary axis. However, if an axis is specifically marked as having
// independent ticks, then that is permissible as well.
if (i == 0 || axis.independentTicks) {
- var ret =
+ axis.ticks =
Dygraph.numericTicks(axis.computedValueRange[0],
axis.computedValueRange[1],
this,
axis);
- axis.ticks = ret.ticks;
- this.numYDigits_ = ret.numDigits;
} else {
var p_axis = this.axes_[0];
var p_ticks = p_axis.ticks;
tick_values.push(y_val);
}
- var ret =
+ axis.ticks =
Dygraph.numericTicks(axis.computedValueRange[0],
axis.computedValueRange[1],
this, axis, tick_values);
- axis.ticks = ret.ticks;
- this.numYDigits_ = ret.numDigits;
}
}
};
this.attrs_.xTicker = Dygraph.dateTicker;
this.attrs_.xAxisLabelFormatter = Dygraph.dateAxisFormatter;
} else {
- this.attrs_.xValueFormatter = this.attrs_.yValueFormatter;
+ this.attrs_.xValueFormatter = function(x) { return x; };
this.attrs_.xValueParser = function(x) { return parseFloat(x); };
this.attrs_.xTicker = Dygraph.numericTicks;
this.attrs_.xAxisLabelFormatter = this.attrs_.xValueFormatter;
return parsedData;
} else {
// Some intelligent defaults for a numeric x-axis.
- this.attrs_.xValueFormatter = this.attrs_.yValueFormatter;
+ this.attrs_.xValueFormatter = function(x) { return x; };
this.attrs_.xTicker = Dygraph.numericTicks;
return data;
}
this.attrs_.xTicker = Dygraph.dateTicker;
this.attrs_.xAxisLabelFormatter = Dygraph.dateAxisFormatter;
} else if (indepType == 'number') {
- this.attrs_.xValueFormatter = this.attrs_.yValueFormatter;
+ this.attrs_.xValueFormatter = function(x) { return x; };
this.attrs_.xValueParser = function(x) { return parseFloat(x); };
this.attrs_.xTicker = Dygraph.numericTicks;
this.attrs_.xAxisLabelFormatter = this.attrs_.xValueFormatter;