X-Git-Url: https://adrianiainlam.tk/git/?a=blobdiff_plain;f=phasenoise1signal.m;h=f819e653fe0a75b9d78f2b0d5ce78678ea0350be;hb=6a44550d735c954aef8333e48a481670d85fd505;hp=e0ee39d5bda89f8a67a6bd3b80c4b536f569721b;hpb=1eeb62fbc496ed5c170d199143ad53e28122d29c;p=4yp.git diff --git a/phasenoise1signal.m b/phasenoise1signal.m index e0ee39d..f819e65 100644 --- a/phasenoise1signal.m +++ b/phasenoise1signal.m @@ -2,14 +2,14 @@ numSymbs = 10000; M = 4; Rsym = 2.5e10; % symbol rate (sym/sec) -rolloff = 0.25; +rolloff = 0.5; span = 6; % filter span sps = 4; % samples per symbol fs = Rsym * sps; % sampling freq (Hz) Tsamp = 1 / fs; -t = (0 : 1 / fs : numSymbs / Rsym + (1.5 * span * sps - 1) / fs)'; +t = (0 : 1 / fs : numSymbs / Rsym + (1.5 * span * sps - 1) / fs).'; EbN0_db = 8; @@ -24,50 +24,58 @@ EsN0_db = 10 .* log10(EsN0); data = randi([0 M - 1], numSymbs, 1); -modData = pskmod(data, M, 0, 'gray'); +pskSym = pskmod(data, M, pi/M, 'gray'); +dpskSym = dpskmod(data, M, pi/M, 'gray'); -x = txFilter(modData, rolloff, span, sps); +xPSK = txFilter(pskSym, rolloff, span, sps); +xDPSK = txFilter(dpskSym, rolloff, span, sps); -linewidthTx = 0;%1e5; % Hz -linewidthLO = 1e6; % Hz -%%linewidthTx = Rsym * 1e-4; % Hz -%%linewidthLO = Rsym * 1e-3; % Hz +linewidthTx = 0; % Hz +linewidthLO = 10e6; % Hz + +[xPSKpn, pTxLoPSK] = phaseNoise(xPSK, linewidthTx, linewidthLO, Tsamp); +[xDPSKpn, pTxLoDPSK] = phaseNoise(xDPSK, linewidthTx, linewidthLO, Tsamp); -[xPN, pTxLO] = phaseNoise(x, linewidthTx, linewidthLO, Tsamp); snr = EbN0_db + 10 * log10(log2(M)) - 10 * log10(sps); -noiseEnergy = 10 ^ (-snr / 10); -y = awgn(xPN, snr, 'measured'); +%%y = awgn(xPN, snr, 'measured'); +yPSK = awgn(xPSKpn, snr, 'measured'); +yDPSK = xDPSKpn; + +rPSK = rxFilter(yPSK, rolloff, span, sps); +rDPSK = rxFilter(yDPSK, rolloff, span, sps); -r = rxFilter(y, rolloff, span, sps); -[rPhaseEq, phiests] = phaseNoiseCorr(r, M, 40 * sps); -rPhaseEq = normalizeEnergy(rPhaseEq, numSymbs, 1 + noiseEnergy); +rPSKSa = rPSK(sps*span/2+1:sps:(numSymbs+span/2)*sps); +rDPSKSa = rDPSK(sps*span/2+1:sps:(numSymbs+span/2)*sps); -rSampled = rPhaseEq(sps*span/2+1:sps:(numSymbs + span/2) * sps); -demodData = pskdemod(rSampled, M, 0, 'gray')'; +[rPSKSaPhEq, phiestsPSK] = phaseNoiseCorr(rPSKSa, M, pi/M, 40); -[bitErrors, ber] = biterr(data, demodData) +demodPSK = pskdemod(rPSKSaPhEq, M, pi/M, 'gray'); +demodDPSK = dpskdemod(rDPSKSa, M, pi/M, 'gray'); +[bitErrors, ber] = biterr(data, demodPSK.') + figure(2); -plot(-phiests); +plot(t(1:40000), repelem(-phiestsPSK, sps)); hold on; -plot(pTxLO); +plot(t(1:40000), pTxLoPSK(1:40000)); legend('estimate', 'actual'); title('Phase noise estimation'); hold off; - +return figure(3); -plot(t(1:length(x)), real(x)); +plot(t(1:length(x)), real(normalizeEnergy(x, numSymbs*sps, 1))); hold on; -plot(t, real(rPhaseEq), 'r'); -%%sampledTimes = t(sps*span/2+1:sps:(numSymbs+span/2)*sps); +%%plot(t, real(rPhaseEq), 'r'); +sampledTimes = t(sps*span/2+1:sps:(numSymbs+span/2)*sps); %%plot(sampledTimes, real(rSampled), 'x'); +plot(sampledTimes, real(normalizeEnergy(rSaPhEq, numSymbs, 1)), 'x'); legend('original signal', 'corrected received signal'); -title('Phase noise correction, linewidth 1 MHz, E_b/N_0=8 dB'); +title('Phase noise correction, linewidth 1 MHz, $E_b/N_0=8$ dB'); ylabel('Real part of signals'); axis([t(1) t(300) -Inf +Inf]); hold off;