X-Git-Url: https://adrianiainlam.tk/git/?a=blobdiff_plain;f=chromaticDispersion1Signal.m;h=7d9e980b4e08b1c1198456be72913a57558e8533;hb=4fb42ae8b219be3b6644f829583584d249bf139d;hp=db259659f532a51acf2b242a8d38731356fe07f1;hpb=1eeb62fbc496ed5c170d199143ad53e28122d29c;p=4yp.git diff --git a/chromaticDispersion1Signal.m b/chromaticDispersion1Signal.m index db25965..7d9e980 100644 --- a/chromaticDispersion1Signal.m +++ b/chromaticDispersion1Signal.m @@ -1,63 +1,85 @@ M = 4; -numSymbs = 1000; +numSymbs = 100000; -%% https://www.mathworks.com/help/comm/examples/passband-modulation-with-adjacent-channel-interference.html Rsym = 2.5e10; % symbol rate (sym/sec) span = 6; % Tx/Rx filter span rolloff = 0.25; % Tx/Rx RRC rolloff sps = 4; % samples per symbol - fs = Rsym * sps; % sampling freq (Hz) Tsamp = 1 / fs; -t = (0 : 1 / fs : numSymbs / Rsym + (1.5 * span * sps - 1) / fs)'; - +t = (0 : 1 / fs : numSymbs / Rsym + (1.5 * span * sps - 1) / fs).'; data = randi([0 M - 1], numSymbs, 1); -modData = pskmod(data, M, 0, 'gray'); +modData = pskmod(data, M, pi / M, 'gray'); x = txFilter(modData, rolloff, span, sps); %% Simulate chromatic dispersion -D = 20; % ps / (nm km) +D = 17; % ps / (nm km) lambda = 1550; % nm -z = 1000; % km +z = 10; % km [xCD, xCDkstart] = chromaticDispersion(x, D, lambda, z, Tsamp); xCD = normalizeEnergy(xCD, numSymbs, 1); +EbN0_db = 8; +snr = EbN0_db + 10 * log10(log2(M)) - 10 * log10(sps); +noiseEnergy = 10 ^ (-snr / 10); +%%y = awgn(xCD, snr, 'measured'); y = xCD; - yCDComp = CDCompensation(y, D, lambda, z, Tsamp); +%%yCDComp = y; + +r = rxFilter(yCDComp, rolloff, span, sps); +rSampled = r(sps*span/2+1:sps:(numSymbs + span/2) * sps); + +%% if no CD comp, then rotate constellation. Use: +%{ +theta = angle(-sum(rSampled .^ M)) / M; +%% if theta approx +pi/M, wrap to -pi/M +if abs(theta - pi / M) / (pi / M) < 0.1 + theta = -pi / M; +end +rSampled = rSampled .* exp(-j * theta); +%} + +rAdaptEq = adaptiveCMA(rSampled); %% Compare original signal and compensated signal -figure(1); +figure(101); +clf; +tsym = t(sps*span/2+1:sps:(numSymbs+span/2)*sps); subplot(211); -plot(real(x(1:300))); +plot(t(1:length(x)), real(normalizeEnergy(x, numSymbs*sps, 1)), 'b'); hold on -plot(real(yCDComp(1:300))); -hold off +plot(t(1:length(x)), real(normalizeEnergy(yCDComp(1:length(x)), numSymbs*sps, 1)), 'r'); +plot(tsym, real(rAdaptEq), 'xg'); +hold off; title('Real part'); -legend('original', 'dispersion compensated'); +legend('original', 'dispersion compensated', 'CMA equalized samples'); +axis([t(6000*sps+1) t(6000*sps+150) -Inf +Inf]); subplot(212); -plot(imag(x(1:300))); -hold on -plot(imag(yCDComp(1:300))); -hold off +plot(t(1:length(x)), imag(normalizeEnergy(x, numSymbs*sps, 1)), 'b'); +hold on; +plot(t(1:length(x)), imag(normalizeEnergy(yCDComp(1:length(x)), numSymbs*sps, 1)), 'r'); +plot(tsym, imag(rAdaptEq), 'xg'); +hold off; title('Imag part'); - - -r = rxFilter(yCDComp, rolloff, span, sps); -r = normalizeEnergy(r, numSymbs, 1); % Add noise energy if needed - -rSampled = r(sps*span/2+1:sps:(numSymbs + span/2) * sps); +axis([t(6000*sps+1) t(6000*sps+150) -Inf +Inf]); scatterplot(modData); title('Constellation of original modulation'); scatterplot(rSampled); -title('Constellation of sampled received waveform'); +title('Constellation of matched filter output'); +scatterplot(rAdaptEq); +title('Constellation of adaptive filter output'); + +demodData = pskdemod(rSampled, M, pi / M, 'gray'); +demodAdapt = pskdemod(rAdaptEq, M, pi / M, 'gray'); -demodData = pskdemod(rSampled, M, 0, 'gray'); +[~, ber] = biterr(data, demodData) +[~, ber] = biterr(data, demodAdapt)