| 1 | /** |
| 2 | * @license |
| 3 | * Copyright 2011 Dan Vanderkam (danvdk@gmail.com) |
| 4 | * MIT-licensed (http://opensource.org/licenses/MIT) |
| 5 | */ |
| 6 | |
| 7 | /** |
| 8 | * @fileoverview Description of this file. |
| 9 | * @author danvk@google.com (Dan Vanderkam) |
| 10 | * |
| 11 | * A ticker is a function with the following interface: |
| 12 | * |
| 13 | * function(a, b, pixels, options_view, dygraph, forced_values); |
| 14 | * -> [ { v: tick1_v, label: tick1_label[, label_v: label_v1] }, |
| 15 | * { v: tick2_v, label: tick2_label[, label_v: label_v2] }, |
| 16 | * ... |
| 17 | * ] |
| 18 | * |
| 19 | * The returned value is called a "tick list". |
| 20 | * |
| 21 | * Arguments |
| 22 | * --------- |
| 23 | * |
| 24 | * [a, b] is the range of the axis for which ticks are being generated. For a |
| 25 | * numeric axis, these will simply be numbers. For a date axis, these will be |
| 26 | * millis since epoch (convertable to Date objects using "new Date(a)" and "new |
| 27 | * Date(b)"). |
| 28 | * |
| 29 | * opts provides access to chart- and axis-specific options. It can be used to |
| 30 | * access number/date formatting code/options, check for a log scale, etc. |
| 31 | * |
| 32 | * pixels is the length of the axis in pixels. opts('pixelsPerLabel') is the |
| 33 | * minimum amount of space to be allotted to each label. For instance, if |
| 34 | * pixels=400 and opts('pixelsPerLabel')=40 then the ticker should return |
| 35 | * between zero and ten (400/40) ticks. |
| 36 | * |
| 37 | * dygraph is the Dygraph object for which an axis is being constructed. |
| 38 | * |
| 39 | * forced_values is used for secondary y-axes. The tick positions are typically |
| 40 | * set by the primary y-axis, so the secondary y-axis has no choice in where to |
| 41 | * put these. It simply has to generate labels for these data values. |
| 42 | * |
| 43 | * Tick lists |
| 44 | * ---------- |
| 45 | * Typically a tick will have both a grid/tick line and a label at one end of |
| 46 | * that line (at the bottom for an x-axis, at left or right for the y-axis). |
| 47 | * |
| 48 | * A tick may be missing one of these two components: |
| 49 | * - If "label_v" is specified instead of "v", then there will be no tick or |
| 50 | * gridline, just a label. |
| 51 | * - Similarly, if "label" is not specified, then there will be a gridline |
| 52 | * without a label. |
| 53 | * |
| 54 | * This flexibility is useful in a few situations: |
| 55 | * - For log scales, some of the tick lines may be too close to all have labels. |
| 56 | * - For date scales where years are being displayed, it is desirable to display |
| 57 | * tick marks at the beginnings of years but labels (e.g. "2006") in the |
| 58 | * middle of the years. |
| 59 | */ |
| 60 | |
| 61 | /*jshint sub:true */ |
| 62 | /*global Dygraph:false */ |
| 63 | (function() { |
| 64 | "use strict"; |
| 65 | |
| 66 | /** @typedef {Array.<{v:number, label:string, label_v:(string|undefined)}>} */ |
| 67 | Dygraph.TickList = undefined; // the ' = undefined' keeps jshint happy. |
| 68 | |
| 69 | /** @typedef {function( |
| 70 | * number, |
| 71 | * number, |
| 72 | * number, |
| 73 | * function(string):*, |
| 74 | * Dygraph=, |
| 75 | * Array.<number>= |
| 76 | * ): Dygraph.TickList} |
| 77 | */ |
| 78 | Dygraph.Ticker = undefined; // the ' = undefined' keeps jshint happy. |
| 79 | |
| 80 | /** @type {Dygraph.Ticker} */ |
| 81 | Dygraph.numericLinearTicks = function(a, b, pixels, opts, dygraph, vals) { |
| 82 | var nonLogscaleOpts = function(opt) { |
| 83 | if (opt === 'logscale') return false; |
| 84 | return opts(opt); |
| 85 | }; |
| 86 | return Dygraph.numericTicks(a, b, pixels, nonLogscaleOpts, dygraph, vals); |
| 87 | }; |
| 88 | |
| 89 | /** @type {Dygraph.Ticker} */ |
| 90 | Dygraph.numericTicks = function(a, b, pixels, opts, dygraph, vals) { |
| 91 | var pixels_per_tick = /** @type{number} */(opts('pixelsPerLabel')); |
| 92 | var ticks = []; |
| 93 | var i, j, tickV, nTicks; |
| 94 | if (vals) { |
| 95 | for (i = 0; i < vals.length; i++) { |
| 96 | ticks.push({v: vals[i]}); |
| 97 | } |
| 98 | } else { |
| 99 | // TODO(danvk): factor this log-scale block out into a separate function. |
| 100 | if (opts("logscale")) { |
| 101 | nTicks = Math.floor(pixels / pixels_per_tick); |
| 102 | var minIdx = Dygraph.binarySearch(a, Dygraph.PREFERRED_LOG_TICK_VALUES, 1); |
| 103 | var maxIdx = Dygraph.binarySearch(b, Dygraph.PREFERRED_LOG_TICK_VALUES, -1); |
| 104 | if (minIdx == -1) { |
| 105 | minIdx = 0; |
| 106 | } |
| 107 | if (maxIdx == -1) { |
| 108 | maxIdx = Dygraph.PREFERRED_LOG_TICK_VALUES.length - 1; |
| 109 | } |
| 110 | // Count the number of tick values would appear, if we can get at least |
| 111 | // nTicks / 4 accept them. |
| 112 | var lastDisplayed = null; |
| 113 | if (maxIdx - minIdx >= nTicks / 4) { |
| 114 | for (var idx = maxIdx; idx >= minIdx; idx--) { |
| 115 | var tickValue = Dygraph.PREFERRED_LOG_TICK_VALUES[idx]; |
| 116 | var pixel_coord = Math.log(tickValue / a) / Math.log(b / a) * pixels; |
| 117 | var tick = { v: tickValue }; |
| 118 | if (lastDisplayed === null) { |
| 119 | lastDisplayed = { |
| 120 | tickValue : tickValue, |
| 121 | pixel_coord : pixel_coord |
| 122 | }; |
| 123 | } else { |
| 124 | if (Math.abs(pixel_coord - lastDisplayed.pixel_coord) >= pixels_per_tick) { |
| 125 | lastDisplayed = { |
| 126 | tickValue : tickValue, |
| 127 | pixel_coord : pixel_coord |
| 128 | }; |
| 129 | } else { |
| 130 | tick.label = ""; |
| 131 | } |
| 132 | } |
| 133 | ticks.push(tick); |
| 134 | } |
| 135 | // Since we went in backwards order. |
| 136 | ticks.reverse(); |
| 137 | } |
| 138 | } |
| 139 | |
| 140 | // ticks.length won't be 0 if the log scale function finds values to insert. |
| 141 | if (ticks.length === 0) { |
| 142 | // Basic idea: |
| 143 | // Try labels every 1, 2, 5, 10, 20, 50, 100, etc. |
| 144 | // Calculate the resulting tick spacing (i.e. this.height_ / nTicks). |
| 145 | // The first spacing greater than pixelsPerYLabel is what we use. |
| 146 | // TODO(danvk): version that works on a log scale. |
| 147 | var kmg2 = opts("labelsKMG2"); |
| 148 | var mults, base; |
| 149 | if (kmg2) { |
| 150 | mults = [1, 2, 4, 8, 16, 32, 64, 128, 256]; |
| 151 | base = 16; |
| 152 | } else { |
| 153 | mults = [1, 2, 5, 10, 20, 50, 100]; |
| 154 | base = 10; |
| 155 | } |
| 156 | |
| 157 | // Get the maximum number of permitted ticks based on the |
| 158 | // graph's pixel size and pixels_per_tick setting. |
| 159 | var max_ticks = Math.ceil(pixels / pixels_per_tick); |
| 160 | |
| 161 | // Now calculate the data unit equivalent of this tick spacing. |
| 162 | // Use abs() since graphs may have a reversed Y axis. |
| 163 | var units_per_tick = Math.abs(b - a) / max_ticks; |
| 164 | |
| 165 | // Based on this, get a starting scale which is the largest |
| 166 | // integer power of the chosen base (10 or 16) that still remains |
| 167 | // below the requested pixels_per_tick spacing. |
| 168 | var base_power = Math.floor(Math.log(units_per_tick) / Math.log(base)); |
| 169 | var base_scale = Math.pow(base, base_power); |
| 170 | |
| 171 | // Now try multiples of the starting scale until we find one |
| 172 | // that results in tick marks spaced sufficiently far apart. |
| 173 | // The "mults" array should cover the range 1 .. base^2 to |
| 174 | // adjust for rounding and edge effects. |
| 175 | var scale, low_val, high_val, spacing; |
| 176 | for (j = 0; j < mults.length; j++) { |
| 177 | scale = base_scale * mults[j]; |
| 178 | low_val = Math.floor(a / scale) * scale; |
| 179 | high_val = Math.ceil(b / scale) * scale; |
| 180 | nTicks = Math.abs(high_val - low_val) / scale; |
| 181 | spacing = pixels / nTicks; |
| 182 | if (spacing > pixels_per_tick) break; |
| 183 | } |
| 184 | |
| 185 | // Construct the set of ticks. |
| 186 | // Allow reverse y-axis if it's explicitly requested. |
| 187 | if (low_val > high_val) scale *= -1; |
| 188 | for (i = 0; i <= nTicks; i++) { |
| 189 | tickV = low_val + i * scale; |
| 190 | ticks.push( {v: tickV} ); |
| 191 | } |
| 192 | } |
| 193 | } |
| 194 | |
| 195 | var formatter = /**@type{AxisLabelFormatter}*/(opts('axisLabelFormatter')); |
| 196 | |
| 197 | // Add labels to the ticks. |
| 198 | for (i = 0; i < ticks.length; i++) { |
| 199 | if (ticks[i].label !== undefined) continue; // Use current label. |
| 200 | // TODO(danvk): set granularity to something appropriate here. |
| 201 | ticks[i].label = formatter.call(dygraph, ticks[i].v, 0, opts, dygraph); |
| 202 | } |
| 203 | |
| 204 | return ticks; |
| 205 | }; |
| 206 | |
| 207 | |
| 208 | /** @type {Dygraph.Ticker} */ |
| 209 | Dygraph.dateTicker = function(a, b, pixels, opts, dygraph, vals) { |
| 210 | var chosen = Dygraph.pickDateTickGranularity(a, b, pixels, opts); |
| 211 | |
| 212 | if (chosen >= 0) { |
| 213 | return Dygraph.getDateAxis(a, b, chosen, opts, dygraph); |
| 214 | } else { |
| 215 | // this can happen if self.width_ is zero. |
| 216 | return []; |
| 217 | } |
| 218 | }; |
| 219 | |
| 220 | // Time granularity enumeration |
| 221 | // TODO(danvk): make this an @enum |
| 222 | Dygraph.SECONDLY = 0; |
| 223 | Dygraph.TWO_SECONDLY = 1; |
| 224 | Dygraph.FIVE_SECONDLY = 2; |
| 225 | Dygraph.TEN_SECONDLY = 3; |
| 226 | Dygraph.THIRTY_SECONDLY = 4; |
| 227 | Dygraph.MINUTELY = 5; |
| 228 | Dygraph.TWO_MINUTELY = 6; |
| 229 | Dygraph.FIVE_MINUTELY = 7; |
| 230 | Dygraph.TEN_MINUTELY = 8; |
| 231 | Dygraph.THIRTY_MINUTELY = 9; |
| 232 | Dygraph.HOURLY = 10; |
| 233 | Dygraph.TWO_HOURLY = 11; |
| 234 | Dygraph.SIX_HOURLY = 12; |
| 235 | Dygraph.DAILY = 13; |
| 236 | Dygraph.TWO_DAILY = 14; |
| 237 | Dygraph.WEEKLY = 15; |
| 238 | Dygraph.MONTHLY = 16; |
| 239 | Dygraph.QUARTERLY = 17; |
| 240 | Dygraph.BIANNUAL = 18; |
| 241 | Dygraph.ANNUAL = 19; |
| 242 | Dygraph.DECADAL = 20; |
| 243 | Dygraph.CENTENNIAL = 21; |
| 244 | Dygraph.NUM_GRANULARITIES = 22; |
| 245 | |
| 246 | // Date components enumeration (in the order of the arguments in Date) |
| 247 | // TODO: make this an @enum |
| 248 | Dygraph.DATEFIELD_Y = 0; |
| 249 | Dygraph.DATEFIELD_M = 1; |
| 250 | Dygraph.DATEFIELD_D = 2; |
| 251 | Dygraph.DATEFIELD_HH = 3; |
| 252 | Dygraph.DATEFIELD_MM = 4; |
| 253 | Dygraph.DATEFIELD_SS = 5; |
| 254 | Dygraph.DATEFIELD_MS = 6; |
| 255 | Dygraph.NUM_DATEFIELDS = 7; |
| 256 | |
| 257 | |
| 258 | /** |
| 259 | * The value of datefield will start at an even multiple of "step", i.e. |
| 260 | * if datefield=SS and step=5 then the first tick will be on a multiple of 5s. |
| 261 | * |
| 262 | * For granularities <= HOURLY, ticks are generated every `spacing` ms. |
| 263 | * |
| 264 | * At coarser granularities, ticks are generated by incrementing `datefield` by |
| 265 | * `step`. In this case, the `spacing` value is only used to estimate the |
| 266 | * number of ticks. It should roughly correspond to the spacing between |
| 267 | * adjacent ticks. |
| 268 | * |
| 269 | * @type {Array.<{datefield:number, step:number, spacing:number}>} |
| 270 | */ |
| 271 | Dygraph.TICK_PLACEMENT = []; |
| 272 | Dygraph.TICK_PLACEMENT[Dygraph.SECONDLY] = {datefield: Dygraph.DATEFIELD_SS, step: 1, spacing: 1000 * 1}; |
| 273 | Dygraph.TICK_PLACEMENT[Dygraph.TWO_SECONDLY] = {datefield: Dygraph.DATEFIELD_SS, step: 2, spacing: 1000 * 2}; |
| 274 | Dygraph.TICK_PLACEMENT[Dygraph.FIVE_SECONDLY] = {datefield: Dygraph.DATEFIELD_SS, step: 5, spacing: 1000 * 5}; |
| 275 | Dygraph.TICK_PLACEMENT[Dygraph.TEN_SECONDLY] = {datefield: Dygraph.DATEFIELD_SS, step: 10, spacing: 1000 * 10}; |
| 276 | Dygraph.TICK_PLACEMENT[Dygraph.THIRTY_SECONDLY] = {datefield: Dygraph.DATEFIELD_SS, step: 30, spacing: 1000 * 30}; |
| 277 | Dygraph.TICK_PLACEMENT[Dygraph.MINUTELY] = {datefield: Dygraph.DATEFIELD_MM, step: 1, spacing: 1000 * 60}; |
| 278 | Dygraph.TICK_PLACEMENT[Dygraph.TWO_MINUTELY] = {datefield: Dygraph.DATEFIELD_MM, step: 2, spacing: 1000 * 60 * 2}; |
| 279 | Dygraph.TICK_PLACEMENT[Dygraph.FIVE_MINUTELY] = {datefield: Dygraph.DATEFIELD_MM, step: 5, spacing: 1000 * 60 * 5}; |
| 280 | Dygraph.TICK_PLACEMENT[Dygraph.TEN_MINUTELY] = {datefield: Dygraph.DATEFIELD_MM, step: 10, spacing: 1000 * 60 * 10}; |
| 281 | Dygraph.TICK_PLACEMENT[Dygraph.THIRTY_MINUTELY] = {datefield: Dygraph.DATEFIELD_MM, step: 30, spacing: 1000 * 60 * 30}; |
| 282 | Dygraph.TICK_PLACEMENT[Dygraph.HOURLY] = {datefield: Dygraph.DATEFIELD_HH, step: 1, spacing: 1000 * 3600}; |
| 283 | Dygraph.TICK_PLACEMENT[Dygraph.TWO_HOURLY] = {datefield: Dygraph.DATEFIELD_HH, step: 2, spacing: 1000 * 3600 * 2}; |
| 284 | Dygraph.TICK_PLACEMENT[Dygraph.SIX_HOURLY] = {datefield: Dygraph.DATEFIELD_HH, step: 6, spacing: 1000 * 3600 * 6}; |
| 285 | Dygraph.TICK_PLACEMENT[Dygraph.DAILY] = {datefield: Dygraph.DATEFIELD_D, step: 1, spacing: 1000 * 86400}; |
| 286 | Dygraph.TICK_PLACEMENT[Dygraph.TWO_DAILY] = {datefield: Dygraph.DATEFIELD_D, step: 2, spacing: 1000 * 86400 * 2}; |
| 287 | Dygraph.TICK_PLACEMENT[Dygraph.WEEKLY] = {datefield: Dygraph.DATEFIELD_D, step: 7, spacing: 1000 * 604800}; |
| 288 | Dygraph.TICK_PLACEMENT[Dygraph.MONTHLY] = {datefield: Dygraph.DATEFIELD_M, step: 1, spacing: 1000 * 7200 * 365.2524}; // 1e3 * 60 * 60 * 24 * 365.2524 / 12 |
| 289 | Dygraph.TICK_PLACEMENT[Dygraph.QUARTERLY] = {datefield: Dygraph.DATEFIELD_M, step: 3, spacing: 1000 * 21600 * 365.2524}; // 1e3 * 60 * 60 * 24 * 365.2524 / 4 |
| 290 | Dygraph.TICK_PLACEMENT[Dygraph.BIANNUAL] = {datefield: Dygraph.DATEFIELD_M, step: 6, spacing: 1000 * 43200 * 365.2524}; // 1e3 * 60 * 60 * 24 * 365.2524 / 2 |
| 291 | Dygraph.TICK_PLACEMENT[Dygraph.ANNUAL] = {datefield: Dygraph.DATEFIELD_Y, step: 1, spacing: 1000 * 86400 * 365.2524}; // 1e3 * 60 * 60 * 24 * 365.2524 * 1 |
| 292 | Dygraph.TICK_PLACEMENT[Dygraph.DECADAL] = {datefield: Dygraph.DATEFIELD_Y, step: 10, spacing: 1000 * 864000 * 365.2524}; // 1e3 * 60 * 60 * 24 * 365.2524 * 10 |
| 293 | Dygraph.TICK_PLACEMENT[Dygraph.CENTENNIAL] = {datefield: Dygraph.DATEFIELD_Y, step: 100, spacing: 1000 * 8640000 * 365.2524}; // 1e3 * 60 * 60 * 24 * 365.2524 * 100 |
| 294 | |
| 295 | |
| 296 | /** |
| 297 | * This is a list of human-friendly values at which to show tick marks on a log |
| 298 | * scale. It is k * 10^n, where k=1..9 and n=-39..+39, so: |
| 299 | * ..., 1, 2, 3, 4, 5, ..., 9, 10, 20, 30, ..., 90, 100, 200, 300, ... |
| 300 | * NOTE: this assumes that Dygraph.LOG_SCALE = 10. |
| 301 | * @type {Array.<number>} |
| 302 | */ |
| 303 | Dygraph.PREFERRED_LOG_TICK_VALUES = (function() { |
| 304 | var vals = []; |
| 305 | for (var power = -39; power <= 39; power++) { |
| 306 | var range = Math.pow(10, power); |
| 307 | for (var mult = 1; mult <= 9; mult++) { |
| 308 | var val = range * mult; |
| 309 | vals.push(val); |
| 310 | } |
| 311 | } |
| 312 | return vals; |
| 313 | })(); |
| 314 | |
| 315 | /** |
| 316 | * Determine the correct granularity of ticks on a date axis. |
| 317 | * |
| 318 | * @param {number} a Left edge of the chart (ms) |
| 319 | * @param {number} b Right edge of the chart (ms) |
| 320 | * @param {number} pixels Size of the chart in the relevant dimension (width). |
| 321 | * @param {function(string):*} opts Function mapping from option name -> value. |
| 322 | * @return {number} The appropriate axis granularity for this chart. See the |
| 323 | * enumeration of possible values in dygraph-tickers.js. |
| 324 | */ |
| 325 | Dygraph.pickDateTickGranularity = function(a, b, pixels, opts) { |
| 326 | var pixels_per_tick = /** @type{number} */(opts('pixelsPerLabel')); |
| 327 | for (var i = 0; i < Dygraph.NUM_GRANULARITIES; i++) { |
| 328 | var num_ticks = Dygraph.numDateTicks(a, b, i); |
| 329 | if (pixels / num_ticks >= pixels_per_tick) { |
| 330 | return i; |
| 331 | } |
| 332 | } |
| 333 | return -1; |
| 334 | }; |
| 335 | |
| 336 | /** |
| 337 | * Compute the number of ticks on a date axis for a given granularity. |
| 338 | * @param {number} start_time |
| 339 | * @param {number} end_time |
| 340 | * @param {number} granularity (one of the granularities enumerated above) |
| 341 | * @return {number} (Approximate) number of ticks that would result. |
| 342 | */ |
| 343 | Dygraph.numDateTicks = function(start_time, end_time, granularity) { |
| 344 | var spacing = Dygraph.TICK_PLACEMENT[granularity].spacing; |
| 345 | return Math.round(1.0 * (end_time - start_time) / spacing); |
| 346 | }; |
| 347 | |
| 348 | /** |
| 349 | * Compute the positions and labels of ticks on a date axis for a given granularity. |
| 350 | * @param {number} start_time |
| 351 | * @param {number} end_time |
| 352 | * @param {number} granularity (one of the granularities enumerated above) |
| 353 | * @param {function(string):*} opts Function mapping from option name -> value. |
| 354 | * @param {Dygraph=} dg |
| 355 | * @return {!Dygraph.TickList} |
| 356 | */ |
| 357 | Dygraph.getDateAxis = function(start_time, end_time, granularity, opts, dg) { |
| 358 | var formatter = /** @type{AxisLabelFormatter} */( |
| 359 | opts("axisLabelFormatter")); |
| 360 | var utc = opts("labelsUTC"); |
| 361 | var accessors = utc ? Dygraph.DateAccessorsUTC : Dygraph.DateAccessorsLocal; |
| 362 | |
| 363 | var datefield = Dygraph.TICK_PLACEMENT[granularity].datefield; |
| 364 | var step = Dygraph.TICK_PLACEMENT[granularity].step; |
| 365 | var spacing = Dygraph.TICK_PLACEMENT[granularity].spacing; |
| 366 | |
| 367 | // Choose a nice tick position before the initial instant. |
| 368 | // Currently, this code deals properly with the existent daily granularities: |
| 369 | // DAILY (with step of 1) and WEEKLY (with step of 7 but specially handled). |
| 370 | // Other daily granularities (say TWO_DAILY) should also be handled specially |
| 371 | // by setting the start_date_offset to 0. |
| 372 | var start_date = new Date(start_time); |
| 373 | var date_array = []; |
| 374 | date_array[Dygraph.DATEFIELD_Y] = accessors.getFullYear(start_date); |
| 375 | date_array[Dygraph.DATEFIELD_M] = accessors.getMonth(start_date); |
| 376 | date_array[Dygraph.DATEFIELD_D] = accessors.getDate(start_date); |
| 377 | date_array[Dygraph.DATEFIELD_HH] = accessors.getHours(start_date); |
| 378 | date_array[Dygraph.DATEFIELD_MM] = accessors.getMinutes(start_date); |
| 379 | date_array[Dygraph.DATEFIELD_SS] = accessors.getSeconds(start_date); |
| 380 | date_array[Dygraph.DATEFIELD_MS] = accessors.getMilliseconds(start_date); |
| 381 | |
| 382 | var start_date_offset = date_array[datefield] % step; |
| 383 | if (granularity == Dygraph.WEEKLY) { |
| 384 | // This will put the ticks on Sundays. |
| 385 | start_date_offset = accessors.getDay(start_date); |
| 386 | } |
| 387 | |
| 388 | date_array[datefield] -= start_date_offset; |
| 389 | for (var df = datefield + 1; df < Dygraph.NUM_DATEFIELDS; df++) { |
| 390 | // The minimum value is 1 for the day of month, and 0 for all other fields. |
| 391 | date_array[df] = (df === Dygraph.DATEFIELD_D) ? 1 : 0; |
| 392 | } |
| 393 | |
| 394 | // Generate the ticks. |
| 395 | // For granularities not coarser than HOURLY we use the fact that: |
| 396 | // the number of milliseconds between ticks is constant |
| 397 | // and equal to the defined spacing. |
| 398 | // Otherwise we rely on the 'roll over' property of the Date functions: |
| 399 | // when some date field is set to a value outside of its logical range, |
| 400 | // the excess 'rolls over' the next (more significant) field. |
| 401 | // However, when using local time with DST transitions, |
| 402 | // there are dates that do not represent any time value at all |
| 403 | // (those in the hour skipped at the 'spring forward'), |
| 404 | // and the JavaScript engines usually return an equivalent value. |
| 405 | // Hence we have to check that the date is properly increased at each step, |
| 406 | // returning a date at a nice tick position. |
| 407 | var ticks = []; |
| 408 | var tick_date = accessors.makeDate.apply(null, date_array); |
| 409 | var tick_time = tick_date.getTime(); |
| 410 | if (granularity <= Dygraph.HOURLY) { |
| 411 | if (tick_time < start_time) { |
| 412 | tick_time += spacing; |
| 413 | tick_date = new Date(tick_time); |
| 414 | } |
| 415 | while (tick_time <= end_time) { |
| 416 | ticks.push({ v: tick_time, |
| 417 | label: formatter.call(dg, tick_date, granularity, opts, dg) |
| 418 | }); |
| 419 | tick_time += spacing; |
| 420 | tick_date = new Date(tick_time); |
| 421 | } |
| 422 | } else { |
| 423 | if (tick_time < start_time) { |
| 424 | date_array[datefield] += step; |
| 425 | tick_date = accessors.makeDate.apply(null, date_array); |
| 426 | tick_time = tick_date.getTime(); |
| 427 | } |
| 428 | while (tick_time <= end_time) { |
| 429 | if (granularity >= Dygraph.DAILY || |
| 430 | accessors.getHours(tick_date) % step === 0) { |
| 431 | ticks.push({ v: tick_time, |
| 432 | label: formatter.call(dg, tick_date, granularity, opts, dg) |
| 433 | }); |
| 434 | } |
| 435 | date_array[datefield] += step; |
| 436 | tick_date = accessors.makeDate.apply(null, date_array); |
| 437 | tick_time = tick_date.getTime(); |
| 438 | } |
| 439 | } |
| 440 | return ticks; |
| 441 | }; |
| 442 | |
| 443 | // These are set here so that this file can be included after dygraph.js |
| 444 | // or independently. |
| 445 | if (Dygraph && |
| 446 | Dygraph.DEFAULT_ATTRS && |
| 447 | Dygraph.DEFAULT_ATTRS['axes'] && |
| 448 | Dygraph.DEFAULT_ATTRS['axes']['x'] && |
| 449 | Dygraph.DEFAULT_ATTRS['axes']['y'] && |
| 450 | Dygraph.DEFAULT_ATTRS['axes']['y2']) { |
| 451 | Dygraph.DEFAULT_ATTRS['axes']['x']['ticker'] = Dygraph.dateTicker; |
| 452 | Dygraph.DEFAULT_ATTRS['axes']['y']['ticker'] = Dygraph.numericTicks; |
| 453 | Dygraph.DEFAULT_ATTRS['axes']['y2']['ticker'] = Dygraph.numericTicks; |
| 454 | } |
| 455 | |
| 456 | })(); |