| 1 | /** |
| 2 | * @license |
| 3 | * Copyright 2006 Dan Vanderkam (danvdk@gmail.com) |
| 4 | * MIT-licensed (http://opensource.org/licenses/MIT) |
| 5 | */ |
| 6 | |
| 7 | /** |
| 8 | * @fileoverview Based on PlotKit.CanvasRenderer, but modified to meet the |
| 9 | * needs of dygraphs. |
| 10 | * |
| 11 | * In particular, support for: |
| 12 | * - grid overlays |
| 13 | * - error bars |
| 14 | * - dygraphs attribute system |
| 15 | */ |
| 16 | |
| 17 | /** |
| 18 | * The DygraphCanvasRenderer class does the actual rendering of the chart onto |
| 19 | * a canvas. It's based on PlotKit.CanvasRenderer. |
| 20 | * @param {Object} element The canvas to attach to |
| 21 | * @param {Object} elementContext The 2d context of the canvas (injected so it |
| 22 | * can be mocked for testing.) |
| 23 | * @param {Layout} layout The DygraphLayout object for this graph. |
| 24 | * @constructor |
| 25 | */ |
| 26 | |
| 27 | var DygraphCanvasRenderer = (function() { |
| 28 | /*global Dygraph:false */ |
| 29 | "use strict"; |
| 30 | |
| 31 | |
| 32 | /** |
| 33 | * @constructor |
| 34 | * |
| 35 | * This gets called when there are "new points" to chart. This is generally the |
| 36 | * case when the underlying data being charted has changed. It is _not_ called |
| 37 | * in the common case that the user has zoomed or is panning the view. |
| 38 | * |
| 39 | * The chart canvas has already been created by the Dygraph object. The |
| 40 | * renderer simply gets a drawing context. |
| 41 | * |
| 42 | * @param {Dygraph} dygraph The chart to which this renderer belongs. |
| 43 | * @param {HTMLCanvasElement} element The <canvas> DOM element on which to draw. |
| 44 | * @param {CanvasRenderingContext2D} elementContext The drawing context. |
| 45 | * @param {DygraphLayout} layout The chart's DygraphLayout object. |
| 46 | * |
| 47 | * TODO(danvk): remove the elementContext property. |
| 48 | */ |
| 49 | var DygraphCanvasRenderer = function(dygraph, element, elementContext, layout) { |
| 50 | this.dygraph_ = dygraph; |
| 51 | |
| 52 | this.layout = layout; |
| 53 | this.element = element; |
| 54 | this.elementContext = elementContext; |
| 55 | |
| 56 | this.height = dygraph.height_; |
| 57 | this.width = dygraph.width_; |
| 58 | |
| 59 | // --- check whether everything is ok before we return |
| 60 | if (!Dygraph.isCanvasSupported(this.element)) { |
| 61 | throw "Canvas is not supported."; |
| 62 | } |
| 63 | |
| 64 | // internal state |
| 65 | this.area = layout.getPlotArea(); |
| 66 | |
| 67 | // Set up a clipping area for the canvas (and the interaction canvas). |
| 68 | // This ensures that we don't overdraw. |
| 69 | // on Android 3 and 4, setting a clipping area on a canvas prevents it from |
| 70 | // displaying anything. |
| 71 | if (!Dygraph.isAndroid()) { |
| 72 | var ctx = this.dygraph_.canvas_ctx_; |
| 73 | ctx.beginPath(); |
| 74 | ctx.rect(this.area.x, this.area.y, this.area.w, this.area.h); |
| 75 | ctx.clip(); |
| 76 | |
| 77 | ctx = this.dygraph_.hidden_ctx_; |
| 78 | ctx.beginPath(); |
| 79 | ctx.rect(this.area.x, this.area.y, this.area.w, this.area.h); |
| 80 | ctx.clip(); |
| 81 | } |
| 82 | }; |
| 83 | |
| 84 | /** |
| 85 | * Clears out all chart content and DOM elements. |
| 86 | * This is called immediately before render() on every frame, including |
| 87 | * during zooms and pans. |
| 88 | * @private |
| 89 | */ |
| 90 | DygraphCanvasRenderer.prototype.clear = function() { |
| 91 | this.elementContext.clearRect(0, 0, this.width, this.height); |
| 92 | }; |
| 93 | |
| 94 | /** |
| 95 | * This method is responsible for drawing everything on the chart, including |
| 96 | * lines, error bars, fills and axes. |
| 97 | * It is called immediately after clear() on every frame, including during pans |
| 98 | * and zooms. |
| 99 | * @private |
| 100 | */ |
| 101 | DygraphCanvasRenderer.prototype.render = function() { |
| 102 | // attaches point.canvas{x,y} |
| 103 | this._updatePoints(); |
| 104 | |
| 105 | // actually draws the chart. |
| 106 | this._renderLineChart(); |
| 107 | }; |
| 108 | |
| 109 | /** |
| 110 | * Returns a predicate to be used with an iterator, which will |
| 111 | * iterate over points appropriately, depending on whether |
| 112 | * connectSeparatedPoints is true. When it's false, the predicate will |
| 113 | * skip over points with missing yVals. |
| 114 | */ |
| 115 | DygraphCanvasRenderer._getIteratorPredicate = function(connectSeparatedPoints) { |
| 116 | return connectSeparatedPoints ? |
| 117 | DygraphCanvasRenderer._predicateThatSkipsEmptyPoints : |
| 118 | null; |
| 119 | }; |
| 120 | |
| 121 | DygraphCanvasRenderer._predicateThatSkipsEmptyPoints = |
| 122 | function(array, idx) { |
| 123 | return array[idx].yval !== null; |
| 124 | }; |
| 125 | |
| 126 | /** |
| 127 | * Draws a line with the styles passed in and calls all the drawPointCallbacks. |
| 128 | * @param {Object} e The dictionary passed to the plotter function. |
| 129 | * @private |
| 130 | */ |
| 131 | DygraphCanvasRenderer._drawStyledLine = function(e, |
| 132 | color, strokeWidth, strokePattern, drawPoints, |
| 133 | drawPointCallback, pointSize) { |
| 134 | var g = e.dygraph; |
| 135 | // TODO(konigsberg): Compute attributes outside this method call. |
| 136 | var stepPlot = g.getBooleanOption("stepPlot", e.setName); |
| 137 | |
| 138 | if (!Dygraph.isArrayLike(strokePattern)) { |
| 139 | strokePattern = null; |
| 140 | } |
| 141 | |
| 142 | var drawGapPoints = g.getBooleanOption('drawGapEdgePoints', e.setName); |
| 143 | |
| 144 | var points = e.points; |
| 145 | var setName = e.setName; |
| 146 | var iter = Dygraph.createIterator(points, 0, points.length, |
| 147 | DygraphCanvasRenderer._getIteratorPredicate( |
| 148 | g.getBooleanOption("connectSeparatedPoints", setName))); |
| 149 | |
| 150 | var stroking = strokePattern && (strokePattern.length >= 2); |
| 151 | |
| 152 | var ctx = e.drawingContext; |
| 153 | ctx.save(); |
| 154 | if (stroking) { |
| 155 | ctx.installPattern(strokePattern); |
| 156 | } |
| 157 | |
| 158 | var pointsOnLine = DygraphCanvasRenderer._drawSeries( |
| 159 | e, iter, strokeWidth, pointSize, drawPoints, drawGapPoints, stepPlot, color); |
| 160 | DygraphCanvasRenderer._drawPointsOnLine( |
| 161 | e, pointsOnLine, drawPointCallback, color, pointSize); |
| 162 | |
| 163 | if (stroking) { |
| 164 | ctx.uninstallPattern(); |
| 165 | } |
| 166 | |
| 167 | ctx.restore(); |
| 168 | }; |
| 169 | |
| 170 | /** |
| 171 | * This does the actual drawing of lines on the canvas, for just one series. |
| 172 | * Returns a list of [canvasx, canvasy] pairs for points for which a |
| 173 | * drawPointCallback should be fired. These include isolated points, or all |
| 174 | * points if drawPoints=true. |
| 175 | * @param {Object} e The dictionary passed to the plotter function. |
| 176 | * @private |
| 177 | */ |
| 178 | DygraphCanvasRenderer._drawSeries = function(e, |
| 179 | iter, strokeWidth, pointSize, drawPoints, drawGapPoints, stepPlot, color) { |
| 180 | |
| 181 | var prevCanvasX = null; |
| 182 | var prevCanvasY = null; |
| 183 | var nextCanvasY = null; |
| 184 | var isIsolated; // true if this point is isolated (no line segments) |
| 185 | var point; // the point being processed in the while loop |
| 186 | var pointsOnLine = []; // Array of [canvasx, canvasy] pairs. |
| 187 | var first = true; // the first cycle through the while loop |
| 188 | |
| 189 | var ctx = e.drawingContext; |
| 190 | ctx.beginPath(); |
| 191 | ctx.strokeStyle = color; |
| 192 | ctx.lineWidth = strokeWidth; |
| 193 | |
| 194 | // NOTE: we break the iterator's encapsulation here for about a 25% speedup. |
| 195 | var arr = iter.array_; |
| 196 | var limit = iter.end_; |
| 197 | var predicate = iter.predicate_; |
| 198 | |
| 199 | for (var i = iter.start_; i < limit; i++) { |
| 200 | point = arr[i]; |
| 201 | if (predicate) { |
| 202 | while (i < limit && !predicate(arr, i)) { |
| 203 | i++; |
| 204 | } |
| 205 | if (i == limit) break; |
| 206 | point = arr[i]; |
| 207 | } |
| 208 | |
| 209 | // FIXME: The 'canvasy != canvasy' test here catches NaN values but the test |
| 210 | // doesn't catch Infinity values. Could change this to |
| 211 | // !isFinite(point.canvasy), but I assume it avoids isNaN for performance? |
| 212 | if (point.canvasy === null || point.canvasy != point.canvasy) { |
| 213 | if (stepPlot && prevCanvasX !== null) { |
| 214 | // Draw a horizontal line to the start of the missing data |
| 215 | ctx.moveTo(prevCanvasX, prevCanvasY); |
| 216 | ctx.lineTo(point.canvasx, prevCanvasY); |
| 217 | } |
| 218 | prevCanvasX = prevCanvasY = null; |
| 219 | } else { |
| 220 | isIsolated = false; |
| 221 | if (drawGapPoints || !prevCanvasX) { |
| 222 | iter.nextIdx_ = i; |
| 223 | iter.next(); |
| 224 | nextCanvasY = iter.hasNext ? iter.peek.canvasy : null; |
| 225 | |
| 226 | var isNextCanvasYNullOrNaN = nextCanvasY === null || |
| 227 | nextCanvasY != nextCanvasY; |
| 228 | isIsolated = (!prevCanvasX && isNextCanvasYNullOrNaN); |
| 229 | if (drawGapPoints) { |
| 230 | // Also consider a point to be "isolated" if it's adjacent to a |
| 231 | // null point, excluding the graph edges. |
| 232 | if ((!first && !prevCanvasX) || |
| 233 | (iter.hasNext && isNextCanvasYNullOrNaN)) { |
| 234 | isIsolated = true; |
| 235 | } |
| 236 | } |
| 237 | } |
| 238 | |
| 239 | if (prevCanvasX !== null) { |
| 240 | if (strokeWidth) { |
| 241 | if (stepPlot) { |
| 242 | ctx.moveTo(prevCanvasX, prevCanvasY); |
| 243 | ctx.lineTo(point.canvasx, prevCanvasY); |
| 244 | } |
| 245 | |
| 246 | ctx.lineTo(point.canvasx, point.canvasy); |
| 247 | } |
| 248 | } else { |
| 249 | ctx.moveTo(point.canvasx, point.canvasy); |
| 250 | } |
| 251 | if (drawPoints || isIsolated) { |
| 252 | pointsOnLine.push([point.canvasx, point.canvasy, point.idx]); |
| 253 | } |
| 254 | prevCanvasX = point.canvasx; |
| 255 | prevCanvasY = point.canvasy; |
| 256 | } |
| 257 | first = false; |
| 258 | } |
| 259 | ctx.stroke(); |
| 260 | return pointsOnLine; |
| 261 | }; |
| 262 | |
| 263 | /** |
| 264 | * This fires the drawPointCallback functions, which draw dots on the points by |
| 265 | * default. This gets used when the "drawPoints" option is set, or when there |
| 266 | * are isolated points. |
| 267 | * @param {Object} e The dictionary passed to the plotter function. |
| 268 | * @private |
| 269 | */ |
| 270 | DygraphCanvasRenderer._drawPointsOnLine = function( |
| 271 | e, pointsOnLine, drawPointCallback, color, pointSize) { |
| 272 | var ctx = e.drawingContext; |
| 273 | for (var idx = 0; idx < pointsOnLine.length; idx++) { |
| 274 | var cb = pointsOnLine[idx]; |
| 275 | ctx.save(); |
| 276 | drawPointCallback.call(e.dygraph, |
| 277 | e.dygraph, e.setName, ctx, cb[0], cb[1], color, pointSize, cb[2]); |
| 278 | ctx.restore(); |
| 279 | } |
| 280 | }; |
| 281 | |
| 282 | /** |
| 283 | * Attaches canvas coordinates to the points array. |
| 284 | * @private |
| 285 | */ |
| 286 | DygraphCanvasRenderer.prototype._updatePoints = function() { |
| 287 | // Update Points |
| 288 | // TODO(danvk): here |
| 289 | // |
| 290 | // TODO(bhs): this loop is a hot-spot for high-point-count charts. These |
| 291 | // transformations can be pushed into the canvas via linear transformation |
| 292 | // matrices. |
| 293 | // NOTE(danvk): this is trickier than it sounds at first. The transformation |
| 294 | // needs to be done before the .moveTo() and .lineTo() calls, but must be |
| 295 | // undone before the .stroke() call to ensure that the stroke width is |
| 296 | // unaffected. An alternative is to reduce the stroke width in the |
| 297 | // transformed coordinate space, but you can't specify different values for |
| 298 | // each dimension (as you can with .scale()). The speedup here is ~12%. |
| 299 | var sets = this.layout.points; |
| 300 | for (var i = sets.length; i--;) { |
| 301 | var points = sets[i]; |
| 302 | for (var j = points.length; j--;) { |
| 303 | var point = points[j]; |
| 304 | point.canvasx = this.area.w * point.x + this.area.x; |
| 305 | point.canvasy = this.area.h * point.y + this.area.y; |
| 306 | } |
| 307 | } |
| 308 | }; |
| 309 | |
| 310 | /** |
| 311 | * Add canvas Actually draw the lines chart, including error bars. |
| 312 | * |
| 313 | * This function can only be called if DygraphLayout's points array has been |
| 314 | * updated with canvas{x,y} attributes, i.e. by |
| 315 | * DygraphCanvasRenderer._updatePoints. |
| 316 | * |
| 317 | * @param {string=} opt_seriesName when specified, only that series will |
| 318 | * be drawn. (This is used for expedited redrawing with highlightSeriesOpts) |
| 319 | * @param {CanvasRenderingContext2D} opt_ctx when specified, the drawing |
| 320 | * context. However, lines are typically drawn on the object's |
| 321 | * elementContext. |
| 322 | * @private |
| 323 | */ |
| 324 | DygraphCanvasRenderer.prototype._renderLineChart = function(opt_seriesName, opt_ctx) { |
| 325 | var ctx = opt_ctx || this.elementContext; |
| 326 | var i; |
| 327 | |
| 328 | var sets = this.layout.points; |
| 329 | var setNames = this.layout.setNames; |
| 330 | var setName; |
| 331 | |
| 332 | this.colors = this.dygraph_.colorsMap_; |
| 333 | |
| 334 | // Determine which series have specialized plotters. |
| 335 | var plotter_attr = this.dygraph_.getOption("plotter"); |
| 336 | var plotters = plotter_attr; |
| 337 | if (!Dygraph.isArrayLike(plotters)) { |
| 338 | plotters = [plotters]; |
| 339 | } |
| 340 | |
| 341 | var setPlotters = {}; // series name -> plotter fn. |
| 342 | for (i = 0; i < setNames.length; i++) { |
| 343 | setName = setNames[i]; |
| 344 | var setPlotter = this.dygraph_.getOption("plotter", setName); |
| 345 | if (setPlotter == plotter_attr) continue; // not specialized. |
| 346 | |
| 347 | setPlotters[setName] = setPlotter; |
| 348 | } |
| 349 | |
| 350 | for (i = 0; i < plotters.length; i++) { |
| 351 | var plotter = plotters[i]; |
| 352 | var is_last = (i == plotters.length - 1); |
| 353 | |
| 354 | for (var j = 0; j < sets.length; j++) { |
| 355 | setName = setNames[j]; |
| 356 | if (opt_seriesName && setName != opt_seriesName) continue; |
| 357 | |
| 358 | var points = sets[j]; |
| 359 | |
| 360 | // Only throw in the specialized plotters on the last iteration. |
| 361 | var p = plotter; |
| 362 | if (setName in setPlotters) { |
| 363 | if (is_last) { |
| 364 | p = setPlotters[setName]; |
| 365 | } else { |
| 366 | // Don't use the standard plotters in this case. |
| 367 | continue; |
| 368 | } |
| 369 | } |
| 370 | |
| 371 | var color = this.colors[setName]; |
| 372 | var strokeWidth = this.dygraph_.getOption("strokeWidth", setName); |
| 373 | |
| 374 | ctx.save(); |
| 375 | ctx.strokeStyle = color; |
| 376 | ctx.lineWidth = strokeWidth; |
| 377 | p({ |
| 378 | points: points, |
| 379 | setName: setName, |
| 380 | drawingContext: ctx, |
| 381 | color: color, |
| 382 | strokeWidth: strokeWidth, |
| 383 | dygraph: this.dygraph_, |
| 384 | axis: this.dygraph_.axisPropertiesForSeries(setName), |
| 385 | plotArea: this.area, |
| 386 | seriesIndex: j, |
| 387 | seriesCount: sets.length, |
| 388 | singleSeriesName: opt_seriesName, |
| 389 | allSeriesPoints: sets |
| 390 | }); |
| 391 | ctx.restore(); |
| 392 | } |
| 393 | } |
| 394 | }; |
| 395 | |
| 396 | /** |
| 397 | * Standard plotters. These may be used by clients via Dygraph.Plotters. |
| 398 | * See comments there for more details. |
| 399 | */ |
| 400 | DygraphCanvasRenderer._Plotters = { |
| 401 | linePlotter: function(e) { |
| 402 | DygraphCanvasRenderer._linePlotter(e); |
| 403 | }, |
| 404 | |
| 405 | fillPlotter: function(e) { |
| 406 | DygraphCanvasRenderer._fillPlotter(e); |
| 407 | }, |
| 408 | |
| 409 | errorPlotter: function(e) { |
| 410 | DygraphCanvasRenderer._errorPlotter(e); |
| 411 | } |
| 412 | }; |
| 413 | |
| 414 | /** |
| 415 | * Plotter which draws the central lines for a series. |
| 416 | * @private |
| 417 | */ |
| 418 | DygraphCanvasRenderer._linePlotter = function(e) { |
| 419 | var g = e.dygraph; |
| 420 | var setName = e.setName; |
| 421 | var strokeWidth = e.strokeWidth; |
| 422 | |
| 423 | // TODO(danvk): Check if there's any performance impact of just calling |
| 424 | // getOption() inside of _drawStyledLine. Passing in so many parameters makes |
| 425 | // this code a bit nasty. |
| 426 | var borderWidth = g.getNumericOption("strokeBorderWidth", setName); |
| 427 | var drawPointCallback = g.getOption("drawPointCallback", setName) || |
| 428 | Dygraph.Circles.DEFAULT; |
| 429 | var strokePattern = g.getOption("strokePattern", setName); |
| 430 | var drawPoints = g.getBooleanOption("drawPoints", setName); |
| 431 | var pointSize = g.getNumericOption("pointSize", setName); |
| 432 | |
| 433 | if (borderWidth && strokeWidth) { |
| 434 | DygraphCanvasRenderer._drawStyledLine(e, |
| 435 | g.getOption("strokeBorderColor", setName), |
| 436 | strokeWidth + 2 * borderWidth, |
| 437 | strokePattern, |
| 438 | drawPoints, |
| 439 | drawPointCallback, |
| 440 | pointSize |
| 441 | ); |
| 442 | } |
| 443 | |
| 444 | DygraphCanvasRenderer._drawStyledLine(e, |
| 445 | e.color, |
| 446 | strokeWidth, |
| 447 | strokePattern, |
| 448 | drawPoints, |
| 449 | drawPointCallback, |
| 450 | pointSize |
| 451 | ); |
| 452 | }; |
| 453 | |
| 454 | /** |
| 455 | * Draws the shaded error bars/confidence intervals for each series. |
| 456 | * This happens before the center lines are drawn, since the center lines |
| 457 | * need to be drawn on top of the error bars for all series. |
| 458 | * @private |
| 459 | */ |
| 460 | DygraphCanvasRenderer._errorPlotter = function(e) { |
| 461 | var g = e.dygraph; |
| 462 | var setName = e.setName; |
| 463 | var errorBars = g.getBooleanOption("errorBars") || |
| 464 | g.getBooleanOption("customBars"); |
| 465 | if (!errorBars) return; |
| 466 | |
| 467 | var fillGraph = g.getBooleanOption("fillGraph", setName); |
| 468 | if (fillGraph) { |
| 469 | console.warn("Can't use fillGraph option with error bars"); |
| 470 | } |
| 471 | |
| 472 | var ctx = e.drawingContext; |
| 473 | var color = e.color; |
| 474 | var fillAlpha = g.getNumericOption('fillAlpha', setName); |
| 475 | var stepPlot = g.getBooleanOption("stepPlot", setName); |
| 476 | var points = e.points; |
| 477 | |
| 478 | var iter = Dygraph.createIterator(points, 0, points.length, |
| 479 | DygraphCanvasRenderer._getIteratorPredicate( |
| 480 | g.getBooleanOption("connectSeparatedPoints", setName))); |
| 481 | |
| 482 | var newYs; |
| 483 | |
| 484 | // setup graphics context |
| 485 | var prevX = NaN; |
| 486 | var prevY = NaN; |
| 487 | var prevYs = [-1, -1]; |
| 488 | // should be same color as the lines but only 15% opaque. |
| 489 | var rgb = Dygraph.toRGB_(color); |
| 490 | var err_color = |
| 491 | 'rgba(' + rgb.r + ',' + rgb.g + ',' + rgb.b + ',' + fillAlpha + ')'; |
| 492 | ctx.fillStyle = err_color; |
| 493 | ctx.beginPath(); |
| 494 | |
| 495 | var isNullUndefinedOrNaN = function(x) { |
| 496 | return (x === null || |
| 497 | x === undefined || |
| 498 | isNaN(x)); |
| 499 | }; |
| 500 | |
| 501 | while (iter.hasNext) { |
| 502 | var point = iter.next(); |
| 503 | if ((!stepPlot && isNullUndefinedOrNaN(point.y)) || |
| 504 | (stepPlot && !isNaN(prevY) && isNullUndefinedOrNaN(prevY))) { |
| 505 | prevX = NaN; |
| 506 | continue; |
| 507 | } |
| 508 | |
| 509 | newYs = [ point.y_bottom, point.y_top ]; |
| 510 | if (stepPlot) { |
| 511 | prevY = point.y; |
| 512 | } |
| 513 | |
| 514 | // The documentation specifically disallows nulls inside the point arrays, |
| 515 | // but in case it happens we should do something sensible. |
| 516 | if (isNaN(newYs[0])) newYs[0] = point.y; |
| 517 | if (isNaN(newYs[1])) newYs[1] = point.y; |
| 518 | |
| 519 | newYs[0] = e.plotArea.h * newYs[0] + e.plotArea.y; |
| 520 | newYs[1] = e.plotArea.h * newYs[1] + e.plotArea.y; |
| 521 | if (!isNaN(prevX)) { |
| 522 | if (stepPlot) { |
| 523 | ctx.moveTo(prevX, prevYs[0]); |
| 524 | ctx.lineTo(point.canvasx, prevYs[0]); |
| 525 | ctx.lineTo(point.canvasx, prevYs[1]); |
| 526 | } else { |
| 527 | ctx.moveTo(prevX, prevYs[0]); |
| 528 | ctx.lineTo(point.canvasx, newYs[0]); |
| 529 | ctx.lineTo(point.canvasx, newYs[1]); |
| 530 | } |
| 531 | ctx.lineTo(prevX, prevYs[1]); |
| 532 | ctx.closePath(); |
| 533 | } |
| 534 | prevYs = newYs; |
| 535 | prevX = point.canvasx; |
| 536 | } |
| 537 | ctx.fill(); |
| 538 | }; |
| 539 | |
| 540 | |
| 541 | /** |
| 542 | * Proxy for CanvasRenderingContext2D which drops moveTo/lineTo calls which are |
| 543 | * superfluous. It accumulates all movements which haven't changed the x-value |
| 544 | * and only applies the two with the most extreme y-values. |
| 545 | * |
| 546 | * Calls to lineTo/moveTo must have non-decreasing x-values. |
| 547 | */ |
| 548 | DygraphCanvasRenderer._fastCanvasProxy = function(context) { |
| 549 | var pendingActions = []; // array of [type, x, y] tuples |
| 550 | var lastRoundedX = null; |
| 551 | var lastFlushedX = null; |
| 552 | |
| 553 | var LINE_TO = 1, |
| 554 | MOVE_TO = 2; |
| 555 | |
| 556 | var actionCount = 0; // number of moveTos and lineTos passed to context. |
| 557 | |
| 558 | // Drop superfluous motions |
| 559 | // Assumes all pendingActions have the same (rounded) x-value. |
| 560 | var compressActions = function(opt_losslessOnly) { |
| 561 | if (pendingActions.length <= 1) return; |
| 562 | |
| 563 | // Lossless compression: drop inconsequential moveTos. |
| 564 | for (var i = pendingActions.length - 1; i > 0; i--) { |
| 565 | var action = pendingActions[i]; |
| 566 | if (action[0] == MOVE_TO) { |
| 567 | var prevAction = pendingActions[i - 1]; |
| 568 | if (prevAction[1] == action[1] && prevAction[2] == action[2]) { |
| 569 | pendingActions.splice(i, 1); |
| 570 | } |
| 571 | } |
| 572 | } |
| 573 | |
| 574 | // Lossless compression: ... drop consecutive moveTos ... |
| 575 | for (var i = 0; i < pendingActions.length - 1; /* incremented internally */) { |
| 576 | var action = pendingActions[i]; |
| 577 | if (action[0] == MOVE_TO && pendingActions[i + 1][0] == MOVE_TO) { |
| 578 | pendingActions.splice(i, 1); |
| 579 | } else { |
| 580 | i++; |
| 581 | } |
| 582 | } |
| 583 | |
| 584 | // Lossy compression: ... drop all but the extreme y-values ... |
| 585 | if (pendingActions.length > 2 && !opt_losslessOnly) { |
| 586 | // keep an initial moveTo, but drop all others. |
| 587 | var startIdx = 0; |
| 588 | if (pendingActions[0][0] == MOVE_TO) startIdx++; |
| 589 | var minIdx = null, maxIdx = null; |
| 590 | for (var i = startIdx; i < pendingActions.length; i++) { |
| 591 | var action = pendingActions[i]; |
| 592 | if (action[0] != LINE_TO) continue; |
| 593 | if (minIdx === null && maxIdx === null) { |
| 594 | minIdx = i; |
| 595 | maxIdx = i; |
| 596 | } else { |
| 597 | var y = action[2]; |
| 598 | if (y < pendingActions[minIdx][2]) { |
| 599 | minIdx = i; |
| 600 | } else if (y > pendingActions[maxIdx][2]) { |
| 601 | maxIdx = i; |
| 602 | } |
| 603 | } |
| 604 | } |
| 605 | var minAction = pendingActions[minIdx], |
| 606 | maxAction = pendingActions[maxIdx]; |
| 607 | pendingActions.splice(startIdx, pendingActions.length - startIdx); |
| 608 | if (minIdx < maxIdx) { |
| 609 | pendingActions.push(minAction); |
| 610 | pendingActions.push(maxAction); |
| 611 | } else if (minIdx > maxIdx) { |
| 612 | pendingActions.push(maxAction); |
| 613 | pendingActions.push(minAction); |
| 614 | } else { |
| 615 | pendingActions.push(minAction); |
| 616 | } |
| 617 | } |
| 618 | }; |
| 619 | |
| 620 | var flushActions = function(opt_noLossyCompression) { |
| 621 | compressActions(opt_noLossyCompression); |
| 622 | for (var i = 0, len = pendingActions.length; i < len; i++) { |
| 623 | var action = pendingActions[i]; |
| 624 | if (action[0] == LINE_TO) { |
| 625 | context.lineTo(action[1], action[2]); |
| 626 | } else if (action[0] == MOVE_TO) { |
| 627 | context.moveTo(action[1], action[2]); |
| 628 | } |
| 629 | } |
| 630 | if (pendingActions.length) { |
| 631 | lastFlushedX = pendingActions[pendingActions.length - 1][1]; |
| 632 | } |
| 633 | actionCount += pendingActions.length; |
| 634 | pendingActions = []; |
| 635 | }; |
| 636 | |
| 637 | var addAction = function(action, x, y) { |
| 638 | var rx = Math.round(x); |
| 639 | if (lastRoundedX === null || rx != lastRoundedX) { |
| 640 | // if there are large gaps on the x-axis, it's essential to keep the |
| 641 | // first and last point as well. |
| 642 | var hasGapOnLeft = (lastRoundedX - lastFlushedX > 1), |
| 643 | hasGapOnRight = (rx - lastRoundedX > 1), |
| 644 | hasGap = hasGapOnLeft || hasGapOnRight; |
| 645 | flushActions(hasGap); |
| 646 | lastRoundedX = rx; |
| 647 | } |
| 648 | pendingActions.push([action, x, y]); |
| 649 | }; |
| 650 | |
| 651 | return { |
| 652 | moveTo: function(x, y) { |
| 653 | addAction(MOVE_TO, x, y); |
| 654 | }, |
| 655 | lineTo: function(x, y) { |
| 656 | addAction(LINE_TO, x, y); |
| 657 | }, |
| 658 | |
| 659 | // for major operations like stroke/fill, we skip compression to ensure |
| 660 | // that there are no artifacts at the right edge. |
| 661 | stroke: function() { flushActions(true); context.stroke(); }, |
| 662 | fill: function() { flushActions(true); context.fill(); }, |
| 663 | beginPath: function() { flushActions(true); context.beginPath(); }, |
| 664 | closePath: function() { flushActions(true); context.closePath(); }, |
| 665 | |
| 666 | _count: function() { return actionCount; } |
| 667 | }; |
| 668 | }; |
| 669 | |
| 670 | /** |
| 671 | * Draws the shaded regions when "fillGraph" is set. Not to be confused with |
| 672 | * error bars. |
| 673 | * |
| 674 | * For stacked charts, it's more convenient to handle all the series |
| 675 | * simultaneously. So this plotter plots all the points on the first series |
| 676 | * it's asked to draw, then ignores all the other series. |
| 677 | * |
| 678 | * @private |
| 679 | */ |
| 680 | DygraphCanvasRenderer._fillPlotter = function(e) { |
| 681 | // Skip if we're drawing a single series for interactive highlight overlay. |
| 682 | if (e.singleSeriesName) return; |
| 683 | |
| 684 | // We'll handle all the series at once, not one-by-one. |
| 685 | if (e.seriesIndex !== 0) return; |
| 686 | |
| 687 | var g = e.dygraph; |
| 688 | var setNames = g.getLabels().slice(1); // remove x-axis |
| 689 | |
| 690 | // getLabels() includes names for invisible series, which are not included in |
| 691 | // allSeriesPoints. We remove those to make the two match. |
| 692 | // TODO(danvk): provide a simpler way to get this information. |
| 693 | for (var i = setNames.length; i >= 0; i--) { |
| 694 | if (!g.visibility()[i]) setNames.splice(i, 1); |
| 695 | } |
| 696 | |
| 697 | var anySeriesFilled = (function() { |
| 698 | for (var i = 0; i < setNames.length; i++) { |
| 699 | if (g.getBooleanOption("fillGraph", setNames[i])) return true; |
| 700 | } |
| 701 | return false; |
| 702 | })(); |
| 703 | |
| 704 | if (!anySeriesFilled) return; |
| 705 | |
| 706 | var area = e.plotArea; |
| 707 | var sets = e.allSeriesPoints; |
| 708 | var setCount = sets.length; |
| 709 | |
| 710 | var fillAlpha = g.getNumericOption('fillAlpha'); |
| 711 | var stackedGraph = g.getBooleanOption("stackedGraph"); |
| 712 | var colors = g.getColors(); |
| 713 | |
| 714 | // For stacked graphs, track the baseline for filling. |
| 715 | // |
| 716 | // The filled areas below graph lines are trapezoids with two |
| 717 | // vertical edges. The top edge is the line segment being drawn, and |
| 718 | // the baseline is the bottom edge. Each baseline corresponds to the |
| 719 | // top line segment from the previous stacked line. In the case of |
| 720 | // step plots, the trapezoids are rectangles. |
| 721 | var baseline = {}; |
| 722 | var currBaseline; |
| 723 | var prevStepPlot; // for different line drawing modes (line/step) per series |
| 724 | |
| 725 | // Helper function to trace a line back along the baseline. |
| 726 | var traceBackPath = function(ctx, baselineX, baselineY, pathBack) { |
| 727 | ctx.lineTo(baselineX, baselineY); |
| 728 | if (stackedGraph) { |
| 729 | for (var i = pathBack.length - 1; i >= 0; i--) { |
| 730 | var pt = pathBack[i]; |
| 731 | ctx.lineTo(pt[0], pt[1]); |
| 732 | } |
| 733 | } |
| 734 | }; |
| 735 | |
| 736 | // process sets in reverse order (needed for stacked graphs) |
| 737 | for (var setIdx = setCount - 1; setIdx >= 0; setIdx--) { |
| 738 | var ctx = e.drawingContext; |
| 739 | var setName = setNames[setIdx]; |
| 740 | if (!g.getBooleanOption('fillGraph', setName)) continue; |
| 741 | |
| 742 | var stepPlot = g.getBooleanOption('stepPlot', setName); |
| 743 | var color = colors[setIdx]; |
| 744 | var axis = g.axisPropertiesForSeries(setName); |
| 745 | var axisY = 1.0 + axis.minyval * axis.yscale; |
| 746 | if (axisY < 0.0) axisY = 0.0; |
| 747 | else if (axisY > 1.0) axisY = 1.0; |
| 748 | axisY = area.h * axisY + area.y; |
| 749 | |
| 750 | var points = sets[setIdx]; |
| 751 | var iter = Dygraph.createIterator(points, 0, points.length, |
| 752 | DygraphCanvasRenderer._getIteratorPredicate( |
| 753 | g.getBooleanOption("connectSeparatedPoints", setName))); |
| 754 | |
| 755 | // setup graphics context |
| 756 | var prevX = NaN; |
| 757 | var prevYs = [-1, -1]; |
| 758 | var newYs; |
| 759 | // should be same color as the lines but only 15% opaque. |
| 760 | var rgb = Dygraph.toRGB_(color); |
| 761 | var err_color = |
| 762 | 'rgba(' + rgb.r + ',' + rgb.g + ',' + rgb.b + ',' + fillAlpha + ')'; |
| 763 | ctx.fillStyle = err_color; |
| 764 | ctx.beginPath(); |
| 765 | var last_x, is_first = true; |
| 766 | |
| 767 | // If the point density is high enough, dropping segments on their way to |
| 768 | // the canvas justifies the overhead of doing so. |
| 769 | if (points.length > 2 * g.width_ || Dygraph.FORCE_FAST_PROXY) { |
| 770 | ctx = DygraphCanvasRenderer._fastCanvasProxy(ctx); |
| 771 | } |
| 772 | |
| 773 | // For filled charts, we draw points from left to right, then back along |
| 774 | // the x-axis to complete a shape for filling. |
| 775 | // For stacked plots, this "back path" is a more complex shape. This array |
| 776 | // stores the [x, y] values needed to trace that shape. |
| 777 | var pathBack = []; |
| 778 | |
| 779 | // TODO(danvk): there are a lot of options at play in this loop. |
| 780 | // The logic would be much clearer if some (e.g. stackGraph and |
| 781 | // stepPlot) were split off into separate sub-plotters. |
| 782 | var point; |
| 783 | while (iter.hasNext) { |
| 784 | point = iter.next(); |
| 785 | if (!Dygraph.isOK(point.y) && !stepPlot) { |
| 786 | traceBackPath(ctx, prevX, prevYs[1], pathBack); |
| 787 | pathBack = []; |
| 788 | prevX = NaN; |
| 789 | if (point.y_stacked !== null && !isNaN(point.y_stacked)) { |
| 790 | baseline[point.canvasx] = area.h * point.y_stacked + area.y; |
| 791 | } |
| 792 | continue; |
| 793 | } |
| 794 | if (stackedGraph) { |
| 795 | if (!is_first && last_x == point.xval) { |
| 796 | continue; |
| 797 | } else { |
| 798 | is_first = false; |
| 799 | last_x = point.xval; |
| 800 | } |
| 801 | |
| 802 | currBaseline = baseline[point.canvasx]; |
| 803 | var lastY; |
| 804 | if (currBaseline === undefined) { |
| 805 | lastY = axisY; |
| 806 | } else { |
| 807 | if(prevStepPlot) { |
| 808 | lastY = currBaseline[0]; |
| 809 | } else { |
| 810 | lastY = currBaseline; |
| 811 | } |
| 812 | } |
| 813 | newYs = [ point.canvasy, lastY ]; |
| 814 | |
| 815 | if (stepPlot) { |
| 816 | // Step plots must keep track of the top and bottom of |
| 817 | // the baseline at each point. |
| 818 | if (prevYs[0] === -1) { |
| 819 | baseline[point.canvasx] = [ point.canvasy, axisY ]; |
| 820 | } else { |
| 821 | baseline[point.canvasx] = [ point.canvasy, prevYs[0] ]; |
| 822 | } |
| 823 | } else { |
| 824 | baseline[point.canvasx] = point.canvasy; |
| 825 | } |
| 826 | |
| 827 | } else { |
| 828 | if (isNaN(point.canvasy) && stepPlot) { |
| 829 | newYs = [ area.y + area.h, axisY ]; |
| 830 | } else { |
| 831 | newYs = [ point.canvasy, axisY ]; |
| 832 | } |
| 833 | } |
| 834 | if (!isNaN(prevX)) { |
| 835 | // Move to top fill point |
| 836 | if (stepPlot) { |
| 837 | ctx.lineTo(point.canvasx, prevYs[0]); |
| 838 | ctx.lineTo(point.canvasx, newYs[0]); |
| 839 | } else { |
| 840 | ctx.lineTo(point.canvasx, newYs[0]); |
| 841 | } |
| 842 | |
| 843 | // Record the baseline for the reverse path. |
| 844 | if (stackedGraph) { |
| 845 | pathBack.push([prevX, prevYs[1]]); |
| 846 | if (prevStepPlot && currBaseline) { |
| 847 | // Draw to the bottom of the baseline |
| 848 | pathBack.push([point.canvasx, currBaseline[1]]); |
| 849 | } else { |
| 850 | pathBack.push([point.canvasx, newYs[1]]); |
| 851 | } |
| 852 | } |
| 853 | } else { |
| 854 | ctx.moveTo(point.canvasx, newYs[1]); |
| 855 | ctx.lineTo(point.canvasx, newYs[0]); |
| 856 | } |
| 857 | prevYs = newYs; |
| 858 | prevX = point.canvasx; |
| 859 | } |
| 860 | prevStepPlot = stepPlot; |
| 861 | if (newYs && point) { |
| 862 | traceBackPath(ctx, point.canvasx, newYs[1], pathBack); |
| 863 | pathBack = []; |
| 864 | } |
| 865 | ctx.fill(); |
| 866 | } |
| 867 | }; |
| 868 | |
| 869 | return DygraphCanvasRenderer; |
| 870 | |
| 871 | })(); |