Commit | Line | Data |
---|---|---|
a49c164a DE |
1 | /** |
2 | * @license | |
3 | * Copyright 2013 David Eberlein (david.eberlein@ch.sauter-bc.com) | |
4 | * MIT-licensed (http://opensource.org/licenses/MIT) | |
5 | */ | |
6 | ||
7 | /** | |
8 | * @fileoverview DataHandler implementation for the error bars option. | |
9 | * @author David Eberlein (david.eberlein@ch.sauter-bc.com) | |
10 | */ | |
11 | ||
12 | (function() { | |
a49c164a | 13 | |
3ea41d86 DV |
14 | /*global Dygraph:false */ |
15 | "use strict"; | |
16 | ||
749281f8 DV |
17 | /** |
18 | * @constructor | |
19 | * @extends Dygraph.DataHandlers.BarsHandler | |
20 | */ | |
21 | Dygraph.DataHandlers.ErrorBarsHandler = function() { | |
22 | }; | |
23 | ||
3ea41d86 DV |
24 | var ErrorBarsHandler = Dygraph.DataHandlers.ErrorBarsHandler; |
25 | ErrorBarsHandler.prototype = new Dygraph.DataHandlers.BarsHandler(); | |
26 | ||
749281f8 | 27 | /** @inheritDoc */ |
3ea41d86 DV |
28 | ErrorBarsHandler.prototype.extractSeries = function(rawData, i, options) { |
29 | // TODO(danvk): pre-allocate series here. | |
30 | var series = []; | |
31 | var x, y, variance, point; | |
32 | var sigma = options.get("sigma"); | |
33 | var logScale = options.get('logscale'); | |
34 | for ( var j = 0; j < rawData.length; j++) { | |
35 | x = rawData[j][0]; | |
36 | point = rawData[j][i]; | |
37 | if (logScale && point !== null) { | |
38 | // On the log scale, points less than zero do not exist. | |
39 | // This will create a gap in the chart. | |
40 | if (point[0] <= 0 || point[0] - sigma * point[1] <= 0) { | |
41 | point = null; | |
a49c164a | 42 | } |
3ea41d86 DV |
43 | } |
44 | // Extract to the unified data format. | |
45 | if (point !== null) { | |
46 | y = point[0]; | |
47 | if (y !== null && !isNaN(y)) { | |
48 | variance = sigma * point[1]; | |
49 | // preserve original error value in extras for further | |
50 | // filtering | |
51 | series.push([ x, y, [ y - variance, y + variance, point[1] ] ]); | |
a49c164a | 52 | } else { |
3ea41d86 | 53 | series.push([ x, y, [ y, y, y ] ]); |
a49c164a | 54 | } |
3ea41d86 DV |
55 | } else { |
56 | series.push([ x, null, [ null, null, null ] ]); | |
a49c164a | 57 | } |
3ea41d86 DV |
58 | } |
59 | return series; | |
60 | }; | |
a49c164a | 61 | |
749281f8 DV |
62 | /** @inheritDoc */ |
63 | ErrorBarsHandler.prototype.rollingAverage = | |
64 | function(originalData, rollPeriod, options) { | |
3ea41d86 DV |
65 | rollPeriod = Math.min(rollPeriod, originalData.length); |
66 | var rollingData = []; | |
67 | var sigma = options.get("sigma"); | |
a49c164a | 68 | |
3ea41d86 | 69 | var i, j, y, v, sum, num_ok, stddev, variance, value; |
a49c164a | 70 | |
3ea41d86 DV |
71 | // Calculate the rolling average for the first rollPeriod - 1 points |
72 | // where there is not enough data to roll over the full number of points | |
73 | for (i = 0; i < originalData.length; i++) { | |
74 | sum = 0; | |
75 | variance = 0; | |
76 | num_ok = 0; | |
77 | for (j = Math.max(0, i - rollPeriod + 1); j < i + 1; j++) { | |
78 | y = originalData[j][1]; | |
79 | if (y === null || isNaN(y)) | |
80 | continue; | |
81 | num_ok++; | |
82 | sum += y; | |
83 | variance += Math.pow(originalData[j][2][2], 2); | |
a49c164a | 84 | } |
3ea41d86 DV |
85 | if (num_ok) { |
86 | stddev = Math.sqrt(variance) / num_ok; | |
87 | value = sum / num_ok; | |
88 | rollingData[i] = [ originalData[i][0], value, | |
89 | [value - sigma * stddev, value + sigma * stddev] ]; | |
90 | } else { | |
91 | // This explicitly preserves NaNs to aid with "independent | |
92 | // series". | |
93 | // See testRollingAveragePreservesNaNs. | |
94 | v = (rollPeriod == 1) ? originalData[i][1] : null; | |
95 | rollingData[i] = [ originalData[i][0], v, [ v, v ] ]; | |
96 | } | |
97 | } | |
98 | ||
99 | return rollingData; | |
100 | }; | |
a49c164a | 101 | |
a49c164a | 102 | })(); |